## Best approximation and quasitriangular algebras

HTML articles powered by AMS MathViewer

- by Timothy G. Feeman PDF
- Trans. Amer. Math. Soc.
**288**(1985), 179-187 Request permission

## Abstract:

If $\mathcal {P}$ is a linearly ordered set of projections on a Hilbert space and $\mathcal {K}$ is the ideal of compact operators, then $\operatorname {Alg} \mathcal {P} + \mathcal {K}$ is the quasitriangular algebra associated with $\mathcal {P}$. We study the problem of finding best approximants in a given quasitriangular algebra to a given operator: given $T$ and $\mathcal {P}$, is there an $A$ in $\operatorname {Alg} \mathcal {P} + \mathcal {K}$ such that $\left \| {T - A} \right \| = \inf \{ \left \| {T - S} \right \|:S \in \operatorname {Alg} \mathcal {P} + \mathcal {K}\}$? We prove that if $\mathcal {A}$ is an operator subalgebra which is closed in the weak operator topology and satisfies a certain condition $\Delta$, then every operator $T$ has a best approximant in $\mathcal {A} + \mathcal {K}$. We also show that if $\mathcal {E}$ is an increasing sequence of finite rank projections converging strongly to the identity then $\operatorname {Alg} \mathcal {E}$ satisfies the condition $\Delta$. Also, we show that if $T$ is not in $\operatorname {Alg} \mathcal {E} + \mathcal {K}$ then the best approximants in $\operatorname {Alg} \mathcal {E} + \mathcal {K}$ to $T$ are never unique.## References

- Erik M. Alfsen and Edward G. Effros,
*Structure in real Banach spaces. I, II*, Ann. of Math. (2)**96**(1972), 98–128; ibid. (2) 96 (1972), 129–173. MR**352946**, DOI 10.2307/1970895 - William Arveson,
*Interpolation problems in nest algebras*, J. Functional Analysis**20**(1975), no. 3, 208–233. MR**0383098**, DOI 10.1016/0022-1236(75)90041-5 - Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields,
*Approximation by compact operators and the space $H^{\infty }+C$*, Ann. of Math. (2)**109**(1979), no. 3, 601–612. MR**534765**, DOI 10.2307/1971228 - Thomas Fall, William Arveson, and Paul Muhly,
*Perturbations of nest algebras*, J. Operator Theory**1**(1979), no. 1, 137–150. MR**526295** - P. R. Halmos,
*Quasitriangular operators*, Acta Sci. Math. (Szeged)**29**(1968), 283–293. MR**234310** - Richard B. Holmes and Bernard R. Kripke,
*Best approximation by compact operators*, Indiana Univ. Math. J.**21**(1971/72), 255–263. MR**296659**, DOI 10.1512/iumj.1971.21.21020 - Richard Holmes, Bruce Scranton, and Joseph Ward,
*Approximation from the space of compact operators and other $M$-ideals*, Duke Math. J.**42**(1975), 259–269. MR**394301** - Daniel H. Luecking,
*The compact Hankel operators form an $M$-ideal in the space of Hankel operators*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 222–224. MR**565343**, DOI 10.1090/S0002-9939-1980-0565343-7 - J. R. Ringrose,
*On some algebras of operators*, Proc. London Math. Soc. (3)**15**(1965), 61–83. MR**171174**, DOI 10.1112/plms/s3-15.1.61

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**288**(1985), 179-187 - MSC: Primary 47D25; Secondary 41A35, 41A65, 47A66
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773055-9
- MathSciNet review: 773055