Decompositions into codimension-two manifolds
HTML articles powered by AMS MathViewer
- by R. J. Daverman and J. J. Walsh
- Trans. Amer. Math. Soc. 288 (1985), 273-291
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773061-4
- PDF | Request permission
Abstract:
Let $M$ denote an orientable $(n + 2)$-manifold and let $G$ denote an upper semicontinuous decomposition of $M$ into continua having the shape of closed, orientable $n$-manifolds. The main result establishes that the decomposition space $M/G$ is a $2$-manifold.References
- Edward G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. (2) 51 (1950), 534–543. MR 35015, DOI 10.2307/1969366
- D. S. Coram and P. F. Duvall Jr., Mappings from $S^{3}$ to $S^{2}$ whose point inverses have the shape of a circle, General Topology Appl. 10 (1979), no. 3, 239–246. MR 546098
- D. S. Coram and P. F. Duvall Jr., Finiteness theorems for approximate fibrations, Trans. Amer. Math. Soc. 269 (1982), no. 2, 383–394. MR 637696, DOI 10.1090/S0002-9947-1982-0637696-9
- R. J. Daverman, Decompositions of manifolds into codimension one submanifolds, Compositio Math. 55 (1985), no. 2, 185–207. MR 795714
- R. J. Daverman and L. S. Husch, Decompositions and approximate fibrations, Michigan Math. J. 31 (1984), no. 2, 197–214. MR 752256, DOI 10.1307/mmj/1029003024
- R. J. Daverman and J. J. Walsh, Decompositions into codimension two spheres and approximate fibrations, Topology Appl. 19 (1985), no. 2, 103–121. MR 789592, DOI 10.1016/0166-8641(85)90064-1 —, Decompositions into submanifolds that yield generalized manifolds (in preparation). J. Dydak and J. Segal, Local $n$-connectivity of decomposition spaces (to appear).
- D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369–383. MR 192475, DOI 10.1112/plms/s3-16.1.369
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 V.-T. Liem, Manifolds accepting codimension one sphere-like decompositions (to appear).
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Andrzej Szulkin, $\textbf {R}^{3}$ is the union of disjoint circles, Amer. Math. Monthly 90 (1983), no. 9, 640–641. MR 719756, DOI 10.2307/2323284
- G. T. Whyburn, Interior Transformations on Surfaces, Amer. J. Math. 60 (1938), no. 2, 477–490. MR 1507329, DOI 10.2307/2371311
- Raymond Louis Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, Vol. XXXII, American Mathematical Society, Providence, R.I., 1963. MR 0182958
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 273-291
- MSC: Primary 57N15; Secondary 51B15, 55P55, 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773061-4
- MathSciNet review: 773061