## Decompositions into codimension-two manifolds

HTML articles powered by AMS MathViewer

- by R. J. Daverman and J. J. Walsh PDF
- Trans. Amer. Math. Soc.
**288**(1985), 273-291 Request permission

## Abstract:

Let $M$ denote an orientable $(n + 2)$-manifold and let $G$ denote an upper semicontinuous decomposition of $M$ into continua having the shape of closed, orientable $n$-manifolds. The main result establishes that the decomposition space $M/G$ is a $2$-manifold.## References

- Edward G. Begle,
*The Vietoris mapping theorem for bicompact spaces*, Ann. of Math. (2)**51**(1950), 534–543. MR**35015**, DOI 10.2307/1969366 - D. S. Coram and P. F. Duvall Jr.,
*Mappings from $S^{3}$ to $S^{2}$ whose point inverses have the shape of a circle*, General Topology Appl.**10**(1979), no. 3, 239–246. MR**546098** - D. S. Coram and P. F. Duvall Jr.,
*Finiteness theorems for approximate fibrations*, Trans. Amer. Math. Soc.**269**(1982), no. 2, 383–394. MR**637696**, DOI 10.1090/S0002-9947-1982-0637696-9 - R. J. Daverman,
*Decompositions of manifolds into codimension one submanifolds*, Compositio Math.**55**(1985), no. 2, 185–207. MR**795714** - R. J. Daverman and L. S. Husch,
*Decompositions and approximate fibrations*, Michigan Math. J.**31**(1984), no. 2, 197–214. MR**752256**, DOI 10.1307/mmj/1029003024 - R. J. Daverman and J. J. Walsh,
*Decompositions into codimension two spheres and approximate fibrations*, Topology Appl.**19**(1985), no. 2, 103–121. MR**789592**, DOI 10.1016/0166-8641(85)90064-1
—, - D. B. A. Epstein,
*The degree of a map*, Proc. London Math. Soc. (3)**16**(1966), 369–383. MR**192475**, DOI 10.1112/plms/s3-16.1.369 - Alexander Grothendieck,
*Sur quelques points d’algèbre homologique*, Tohoku Math. J. (2)**9**(1957), 119–221 (French). MR**102537**, DOI 10.2748/tmj/1178244839 - Witold Hurewicz and Henry Wallman,
*Dimension Theory*, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493**
V.-T. Liem, - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Andrzej Szulkin,
*$\textbf {R}^{3}$ is the union of disjoint circles*, Amer. Math. Monthly**90**(1983), no. 9, 640–641. MR**719756**, DOI 10.2307/2323284 - G. T. Whyburn,
*Interior Transformations on Surfaces*, Amer. J. Math.**60**(1938), no. 2, 477–490. MR**1507329**, DOI 10.2307/2371311 - Raymond Louis Wilder,
*Topology of manifolds*, American Mathematical Society Colloquium Publications, Vol. XXXII, American Mathematical Society, Providence, R.I., 1963. MR**0182958**

*Decompositions into submanifolds that yield generalized manifolds*(in preparation). J. Dydak and J. Segal,

*Local*$n$-

*connectivity of decomposition spaces*(to appear).

*Manifolds accepting codimension one sphere-like decompositions*(to appear).

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**288**(1985), 273-291 - MSC: Primary 57N15; Secondary 51B15, 55P55, 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773061-4
- MathSciNet review: 773061