Functions of uniformly bounded characteristic on Riemann surfaces
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Trans. Amer. Math. Soc. 288 (1985), 395-412
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773067-5
- PDF | Request permission
Abstract:
A characteristic function $T(D,w,f)$ of Shimizu and Ahlfors type for a function $f$ meromorphic in a Riemann surface $R$ is defined, where $D$ is a regular subdomain of $R$ containing a reference point $w \in R$. Next we suppose that $R$ has the Green functions. Letting $T(w,f) = {\lim _{D \uparrow R}}T(D,w,f)$, we define $f$ to be of uniformly bounded characteristic in $R$, $f \in {\text {UBC}}(R)$ in notation, if ${\sup _{w \in R}}T(w,f) < \infty$. We shall propose, among other results, some criteria for $f$ to be in ${\text {UBC}}(R)$ in various terms, namely, Green’s potentials, harmonic majorants, and counting functions. They reveal that ${\text {UBC}}(\Delta )$ for the unit disk $\Delta$ coincides precisely with that introduced in our former work. Many known facts on ${\text {UBC}}(\Delta )$ are extended to ${\text {UBC}}(R)$ by various methods. New proofs even for $R = \Delta$ are found. Some new facts, even for $\Delta$, are added.References
- Albert Baernstein II, Analytic functions of bounded mean oscillation, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 3–36. MR 623463
- Herta Florack, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen, Schr. Math. Inst. Univ. Münster 1948 (1948), no. 1, 34 (German). MR 37362
- Maurice Heins, On the Lindelöf principle, Ann. of Math. (2) 61 (1955), 440–473. MR 69275, DOI 10.2307/1969809
- Maurice Heins, Lindelöfian maps, Ann. of Math. (2) 62 (1955), 418–446. MR 75311, DOI 10.2307/1970072
- Olli Lehto, A majorant principle in the theory of functions, Math. Scand. 1 (1953), 5–17. MR 56705, DOI 10.7146/math.scand.a-10360
- Thomas A. Metzger, On BMOA for Riemann surfaces, Canadian J. Math. 33 (1981), no. 5, 1255–1260. MR 638379, DOI 10.4153/CJM-1981-094-6
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
- M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103–197 (1952) (French). MR 50023
- Leo Sario, Second main theorem without exceptional intervals on arbitrary Riemann surfaces, Michigan Math. J. 10 (1963), 207–219. MR 158065
- Leo Sario, On locally meromorphic functions with single-valued moduli, Pacific J. Math. 13 (1963), 709–724. MR 158064
- Kenneth Stephenson, Weak subordination and stable classes of meromorphic functions, Trans. Amer. Math. Soc. 262 (1980), no. 2, 565–577. MR 586736, DOI 10.1090/S0002-9947-1980-0586736-2
- Leo Sario, Kiyoshi Noshiro, Kikuji Matsumoto, and Mitsuru Nakai, Value distribution theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. In collaboration with Tadashi Kuroda, Kikuji Matsumoto and Mitsuru Nakai. MR 0215998
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Shinji Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), no. 2, 349–367. MR 686650, DOI 10.5186/aasfm.1982.0733
- Shinji Yamashita, Exceptional sets, subordination, and functions of uniformly bounded characteristic, Math. Scand. 54 (1984), no. 2, 242–252. MR 757465, DOI 10.7146/math.scand.a-12056
- Shinji Yamashita, Some remarks on analytic continuations, Tohoku Math. J. (2) 21 (1969), 328–335. MR 247050, DOI 10.2748/tmj/1178243001
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 395-412
- MSC: Primary 30D50; Secondary 30F99
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773067-5
- MathSciNet review: 773067