Analysis on analytic spaces and non-self-dual Yang-Mills fields
HTML articles powered by AMS MathViewer
- by N. P. Buchdahl
- Trans. Amer. Math. Soc. 288 (1985), 431-469
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776387-3
- PDF | Request permission
Abstract:
This paper gives a cohomological description of the Witten-Isenberg-Yasskin-Green generalization to the non-self-dual case of Ward’s twistor construction for self-dual Yang-Mills fields. The groundwork for this description is presented in Part I: with a brief introduction to analytic spaces and differential forms thereon, it contains an investigation of the exactness of the holomorphic relative de Rham complex on formal neighbourhoods of submanifolds, results giving sufficient conditions for the invertibility of pull-back functors on categories of analytic objects, and a discussion of the extension problem for analytic objects in the context of the formalism earlier introduced. Part II deals with non-self-dual Yang-Mills fields: the Yang-Mills field and current are identified in terms of the Griffiths obstructions to extension, including a proof of Manin’s result that "current = obstruction to third order". All higher order obstructions are identified, there being at most ${N^2}$ for a bundle of rank $N$. An ansatz for producing explicit examples of non-self-dual fields is obtained by using the correspondence. This ansatz generates ${\text {SL}}(2,\mathbb {C})$ solutions with topological charge $1$ on ${S^4}$.References
- Alfred Actor, Classical solutions of $\textrm {SU}(2)$ Yang-Mills theories, Rev. Modern Phys. 51 (1979), no. 3, 461–525. MR 541884, DOI 10.1103/RevModPhys.51.461
- M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562, DOI 10.1016/0375-9601(78)90141-X
- Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248. MR 89473, DOI 10.2307/1969996
- Jean-Pierre Bourguignon and H. Blaine Lawson Jr., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189–230. MR 612248
- N. Buchdahl, On the relative de Rham sequence, Proc. Amer. Math. Soc. 87 (1983), no. 2, 363–366. MR 681850, DOI 10.1090/S0002-9939-1983-0681850-3 M. G. Eastwood, Ambitwistors, Twistor Newsletter 9 (1979).$^{1}$ —, Some remarks on non-abelian sheaf cohomology, Twistor Newsletter 12 (1981). —, Formal thickenings of ambitwistors for curved space-time, Twistor Newsletter 17 (1984).
- Michael G. Eastwood, The generalized Penrose-Ward transform, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 165–187. MR 764506, DOI 10.1017/S030500410006271X
- Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée. MR 0345092
- Hans Grauert and Hans Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236–260 (German). MR 170354, DOI 10.1007/BF01360319
- Phillip A. Griffiths, The extension problem in complex analysis. II. Embeddings with positive normal bundle, Amer. J. Math. 88 (1966), 366–446. MR 206980, DOI 10.2307/2373200
- R. C. Gunning, Lectures on vector bundles over Riemann surfaces, University of Tokyo Press, Tokyo; Princeton University Press, Princeton, N.J., 1967. MR 0230326 L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam and London, 1973. L. P. Hughston and T. R. Hurd, Extensions of massless fields into $\mathbb {C}{\mathbb {P}^5}$, Twistor Newsletter 12 (1981).
- J. Isenberg and P. B. Yasskin, Twistor description of non-self-dual Yang-Mills field, Complex manifold techniques in theoretical physics (Proc. Workshop, Lawrence, Kan., 1978) Res. Notes in Math., vol. 32, Pitman, Boston, Mass.-London, 1979, pp. 180–206. MR 564452 J. Isenberg, P. B. Yasskin and P. S. Green, Non-self-dual gauge fields, Phys. Lett. 878 (1978), 462-464.
- Claude LeBrun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), no. 1, 209–231. MR 697071, DOI 10.1090/S0002-9947-1983-0697071-9
- Claude LeBrun, The first formal neighbourhood of ambitwistor space for curved space-time, Lett. Math. Phys. 6 (1982), no. 5, 345–354. MR 677436, DOI 10.1007/BF00419314 Yu. I. Manin, Gauge fields and holomorphic geometry, J. Soviet Math. 21 (1983), 465-507.
- Yu. I. Manin and G. M. Khenkin, Yang-Mills-Dirac equations as Cauchy-Riemann equations in twistor space, Yadernaya Fiz. 35 (1982), no. 6, 1610–1626 (1983) (Russian); English transl., Soviet J. Nuclear Phys. 35 (1982), no. 6, 941–950 (1983). MR 699918 R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969), 38-39.
- Roger Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), no. 1, 31–52. MR 439004, DOI 10.1007/bf00762011 R. Pool, Some applications of complex geometry to mathematical physics, Ph. D. thesis, Rice Univ., 1981.
- Hans-Jörg Reiffen, Das Lemma von Poincaré für holomorphe Differential-formen auf komplexen Räumen, Math. Z. 101 (1967), 269–284 (German). MR 223599, DOI 10.1007/BF01115106
- R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), no. 2, 81–82. MR 443823, DOI 10.1016/0375-9601(77)90842-8
- R. S. Ward, Ansätze for self-dual Yang-Mills fields, Comm. Math. Phys. 80 (1981), no. 4, 563–574. MR 628512 E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978), 394-398.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 431-469
- MSC: Primary 32L25; Secondary 32J25, 81D25, 81E13
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776387-3
- MathSciNet review: 776387