Condensed Julia sets, with an application to a fractal lattice model Hamiltonian
HTML articles powered by AMS MathViewer
- by M. F. Barnsley, J. S. Geronimo and A. N. Harrington
- Trans. Amer. Math. Soc. 288 (1985), 537-561
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776392-7
- PDF | Request permission
Abstract:
The Julia set for the complex rational map $z \to {z^2} - \lambda + \varepsilon /z$, where $\lambda$ and $\varepsilon$ are complex parameters, is considered in the limit as $\varepsilon \to 0$. The result is called the condensed Julia set for $z \to ({z^3} - \lambda z)/z$. The limit of balanced measures, associated functional equations and orthogonal polynomials are considered; it is shown, for example, that for $\lambda \geqslant 2$ the moments, orthogonal polynomials, and associated Jacobi matrix $\mathcal {J}$ can be calculated explicitly and are not those belonging to ${z^2} - \lambda$. The spectrum of $\mathcal {J}$ consists of a point spectrum $P$ together with its derived set. The latter is the Julia set for ${z^2} - \lambda$, and carries none of the spectral mass when $\lambda > 2$. When $\lambda = 2$, $P$ is dense in $[-2,2]$. A similar condensation in the case $\lambda = 15/4$ leads to a system which corresponds precisely to the spectrum and density of states of a two-dimensional Sierpinski gasket model Schrödinger equation. The basic ideas about condensation of Julia sets in general are described. If $R(z)$ is a rational transformation of degree greater than one, then condensation can be attached to \[ z \to R(z) + \varepsilon \sum \limits _{i = 1}^k {{{(z - {a_i})}^{ - {\gamma _i}}},} \] where the ${\gamma _i}$’s and $k$ are finite positive integers and the ${a_i}$’s are complex numbers. If $\infty$ is an indifferent or attractive fixed point of $R(z)$, then all of the moments of the associated condensed balanced measure can be calculated explicitly, as can the orthogonal polynomials when the condensed Julia set is real. Sufficient conditions for the condensed measure $\sigma$ to be a weak limit of the balanced measures ${\mu _\varepsilon }$ are given. Functional equations connected to the condensed measure are derived, and it is noted that their form typifies those encountered in statistical physics, in connection with partition functions for Ising hierarchical models.References
- R. L. Adler and T. J. Rivlin, Ergodic and mixing properties of Chebyshev polynomials, Proc. Amer. Math. Soc. 15 (1964), 794–796. MR 202968, DOI 10.1090/S0002-9939-1964-0202968-3 N. I. Akhiezer, The classical moment problem, Hafner, New York, 1965.
- Joseph Avron and Barry Simon, Almost periodic Schrödinger operators. I. Limit periodic potentials, Comm. Math. Phys. 82 (1981/82), no. 1, 101–120. MR 638515 G. A. Baker, D. Bessis and P. Moussa, A family of almost periodic Schródinger operators, Los Alamos Preprint, 1981.
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 381–384. MR 663789, DOI 10.1090/S0273-0979-1982-15043-1
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, On the invariant sets of a family of quadratic maps, Comm. Math. Phys. 88 (1983), no. 4, 479–501. MR 702565
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Infinite-dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc. 88 (1983), no. 4, 625–630. MR 702288, DOI 10.1090/S0002-9939-1983-0702288-6
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Geometry, electrostatic measure and orthogonal polynomials on Julia sets for polynomials, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 509–520. MR 753919, DOI 10.1017/S0143385700002108 —, Geometrical and electrical properties of some Julia sets, J. Statist. Phys. 37 (1984), 51-92.
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Some tree-like Julia sets and Padé approximants, Lett. Math. Phys. 7 (1983), no. 4, 279–286. MR 719458, DOI 10.1007/BF00420176 —, Almost periodic operators associated with Julia sets, Preprint, Georgia Institute of Technology, 1983; Comm. Math. Phys. (to appear).
- M. F. Barnsley and A. N. Harrington, Moments of balanced measures on Julia sets, Trans. Amer. Math. Soc. 284 (1984), no. 1, 271–280. MR 742425, DOI 10.1090/S0002-9947-1984-0742425-6 J. Bellissard and D. Testard, Almost periodic Hamiltonians: an algebraic approach, Preprint, C.N.R.S., Marseille, France, July 1981.
- J. Béllissard, D. Bessis, and P. Moussa, Chaotic states of almost periodic Schrödinger operators, Phys. Rev. Lett. 49 (1982), no. 10, 701–704. MR 669364, DOI 10.1103/PhysRevLett.49.701 A. N. Berker and S. Ostlund, Renormalization group calculations of finite systems: order parameter and specific heat for epitaxial ordering, J. Phys. C: Solid State Phys. 12 (1979), 4961-4975.
- D. Bessis, J. S. Geronimo, and P. Moussa, Mellin transforms associated with Julia sets and physical applications, J. Statist. Phys. 34 (1984), no. 1-2, 75–110. MR 739123, DOI 10.1007/BF01770350
- Daniel Bessis, Madan Lal Mehta, and Pierre Moussa, Polynômes orthogonaux sur des ensembles de Cantor et itérations des transformations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 15, 705–708 (French, with English summary). MR 650541
- D. Bessis, M. L. Mehta, and P. Moussa, Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings, Lett. Math. Phys. 6 (1982), no. 2, 123–140. MR 651127, DOI 10.1007/BF00401737
- D. Bessis and P. Moussa, Orthogonality properties of iterated polynomial mappings, Comm. Math. Phys. 88 (1983), no. 4, 503–529. MR 702566
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884 R. L. Devaney and M. Krych, Dynamics of $\exp (z)$, Preprint, Boston University, 1983. S. Demko, On balanced measures (unpublished notes).
- B. Derrida, L. de Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. 33 (1983), no. 3, 559–569. MR 732376, DOI 10.1007/BF01018834
- B. Derrida, J.-P. Eckmann, and A. Erzan, Renormalisation groups with periodic and aperiodic orbits, J. Phys. A 16 (1983), no. 5, 893–906. MR 712597
- B. Derrida and H. J. Hilhorst, Singular behaviour of certain infinite products of random $2\times 2$ matrices, J. Phys. A 16 (1983), no. 12, 2641–2654. MR 715727 D. Dhar, Lattices of effectively non-integral dimensionality, J. Math. Phys. 18 (1977), 577-585.
- Eytan Domany, Shlomo Alexander, David Bensimon, and Leo P. Kadanoff, Solutions to the Schrödinger equation on some fractal lattices, Phys. Rev. B (3) 28 (1983), no. 6, 3110–3123. MR 717348, DOI 10.1103/physrevb.28.3110
- Adrien Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 39–63 (French). MR 728980
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
- Lisl Gaal, Classical Galois theory with examples, Markham Publishing Co., Chicago, Ill., 1971. MR 0280465
- John Guckenheimer, Endomorphisms of the Riemann sphere, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 95–123. MR 0274740 M. Herman, Exemples de fractions rationelles ayant une orbite dense sur la sphere de Riemann, Preprint, Ecole Polytechnique, 1983. G. Julia, Memoire sur l’iteration des fonctions rationelles, J. Math. Pures Appl. 4 (1918), 47-245. M. Kaufman and R. B. Griffiths, Exactly soluble Ising models on hierarchical lattices, Phys. Rev. B 24 (1981), 496-498.
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254 —, Fractal aspects of the iteration of $z \to \lambda z(1 - z)$, Ann. N.Y. Acad. Sci. 357 (1980), 249-259.
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743 R. Manñé, P. Sad and D. Sullivan, On the dynamics of rational maps, Preprint.
- David R. Nelson and Michael E. Fisher, Soluble renormalization groups and scaling fields for low-dimensional Ising systems, Ann. Physics 91 (1975), 226–274. MR 391850, DOI 10.1016/0003-4916(75)90284-5
- Tom S. Pitcher and John R. Kinney, Some connections between ergodic theory and the iteration of polynomials, Ark. Mat. 8 (1969), 25–32. MR 263125, DOI 10.1007/BF02589532
- R. Rammal, Nature of eigenstates on fractal structures, Phys. Rev. B (3) 28 (1983), no. 8, 4871–4874. MR 720978, DOI 10.1103/physrevb.28.4871
- R. Rammal, Spectrum of harmonic excitations on fractals, J. Physique 45 (1984), no. 2, 191–206. MR 737523, DOI 10.1051/jphys:01984004502019100 M. Rees, Ergodic rational maps with dense critical point-forward orbit, University of Minnesota Mathematics Report, 82-140.
- David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI 10.1017/s0143385700009603
- Dennis Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 9, 301–303 (French, with English summary). MR 658395 —, Solution of the Fatou-Julia problem on wandering domains, Preprint, 1982. —, Structural stability implies hyperbolicity for Kleinian groups, Preprint, 1982. —, Topological conjugacy classes of analytic endomorphisms, Preprint, 1982. G. Szego, Orthogonal polynomials, Amer. Math. Soc., Providence, R.I., 1939. W. Thurston, Lecture Notes, CBMS Conf., Univ. of Minnesota, 1983.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 537-561
- MSC: Primary 58F11; Secondary 30D05, 82A68
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776392-7
- MathSciNet review: 776392