Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Index theory on curves
HTML articles powered by AMS MathViewer

by Peter Haskell PDF
Trans. Amer. Math. Soc. 288 (1985), 591-604 Request permission


This paper constructs from the $\bar \partial$-operator on the smooth part of a complex projective algebraic curve a cycle in the analytically defined $K$ homology of the curve. The paper identifies the corresponding cycle in the topologically defined $K$ homology.
  • M. F. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 21–30. MR 0266247
  • M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
  • M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. MR 236950, DOI 10.2307/1970715
  • Paul Baum and Ronald G. Douglas, $K$ homology and index theory, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 117–173. MR 679698
  • Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 91–146. MR 573430
  • Jeff Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 5, 2103–2106. MR 530173, DOI 10.1073/pnas.76.5.2103
  • Jeff Cheeger, Mark Goresky, and Robert MacPherson, $L^{2}$-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 303–340. MR 645745
  • Jeff Cheeger and Michael Taylor, On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math. 35 (1982), no. 3, 275–331. MR 649347, DOI 10.1002/cpa.3160350302
  • Ronald G. Douglas, $C^{\ast }$-algebra extensions and $K$-homology, Annals of Mathematics Studies, No. 95, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 571362
  • Herbert Bristol Dwight, Tables of integrals and other mathematical data, The Macmillan Company, New York, 1961. 4th ed. MR 0129577
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
  • John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
  • F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1978. M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N. J., 1981.
  • G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Similar Articles
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 288 (1985), 591-604
  • MSC: Primary 58G10; Secondary 46L80, 46M20, 58G12
  • DOI:
  • MathSciNet review: 776394