Primitive group rings and Noetherian rings of quotients
HTML articles powered by AMS MathViewer
- by Christopher J. B. Brookes and Kenneth A. Brown
- Trans. Amer. Math. Soc. 288 (1985), 605-623
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776395-2
- PDF | Request permission
Abstract:
Let $k$ be a field, and let $G$ be a countable nilpotent group with centre $Z$. We show that the group algebra $kG$ is primitive if and only if $k$ is countable, $G$ is torsion free, and there exists an abelian subgroup $A$ of $G$, of infinite rank, with $A \cap Z = 1$. Suppose now that $G$ is torsion free. Then $kG$ has a partial quotient ring $Q = kG{(kZ)^{ - 1}}$. The above characterisation of the primitivity of $kG$ is intimately connected with the question: When is $Q$ a Noetherian ring? We determine this for those groups $G$, as above, all of whose finite rank subgroups are finitely generated. In this case, $Q$ is Noetherian if and only if $G$ has no abelian subgroup $A$ of infinite rank with $A \cap Z = 1$.References
- C. J. B. Brookes, The primitivity of group rings of soluble groups with trivial periodic radical, J. London Math. Soc. (2) 31 (1985), no. 1, 41–47. MR 810560, DOI 10.1112/jlms/s2-31.1.41
- Kenneth A. Brown, The Nullstellensatz for certain group rings, J. London Math. Soc. (2) 26 (1982), no. 3, 425–434. MR 684556, DOI 10.1112/jlms/s2-26.3.425
- Kenneth A. Brown, Primitive group rings of soluble groups, Arch. Math. (Basel) 36 (1981), no. 5, 404–413. MR 629271, DOI 10.1007/BF01223718
- W. D. Burgess, Rings of quotients of group rings, Canadian J. Math. 21 (1969), 865–875. MR 244399, DOI 10.4153/CJM-1969-094-0
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177
- Robert Gordon, Gabriel and Krull dimension, Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Okla., 1973) Lecture Notes in Pure and Applied Mathematics, Vol. 7, Dekker, New York, 1974, pp. 241–295. MR 0374188
- P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 110750, DOI 10.1112/plms/s3-9.4.595
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211 D. J. S. Robinson, Finiteness conditions and generalised soluble groups. Vols. I, II, Springer-Verlag, Berlin, 1972.
- J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), no. 3, 385–447. MR 491797, DOI 10.1112/plms/s3-36.3.385
- Daniel Segal, On the residual simplicity of certain modules, Proc. London Math. Soc. (3) 34 (1977), no. 2, 327–353. MR 453877, DOI 10.1112/plms/s3-34.2.327
- Robert C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251–257. MR 318201
- P. F. Smith, Quotient rings of group rings, J. London Math. Soc. (2) 3 (1971), 645–660. MR 314886, DOI 10.1112/jlms/s2-3.4.645
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 605-623
- MSC: Primary 16A27; Secondary 16A20, 16A33, 20C07
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776395-2
- MathSciNet review: 776395