Strictly convex simplexwise linear embeddings of a $2$-disk
HTML articles powered by AMS MathViewer
- by Ethan D. Bloch
- Trans. Amer. Math. Soc. 288 (1985), 723-737
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776400-3
- PDF | Request permission
Abstract:
Let $K \subset {{\mathbf {R}}^2}$ be a finitely triangulated $2$-disk; a map $f:K \to {{\mathbf {R}}^2}$ is called simplexwise linear $(SL)$ if $f|\sigma$ is affine linear for each (closed) $2$-simplex $\sigma$ of $K$. Let $E(K) = \{ {\text {orientation preserving SL embeddings}}\;K \to {{\mathbf {R}}^2}\}$, ${E_{{\text {SC}}}}(K) = \{ f \in E(K)|f(K)\;{\text {is strictly convex}}\}$, and let $\overline {E(K)}$ and $\overline {{E_{{\text {SC}}}}(K)}$ denote their closures in the space of all ${\text {SL}}$ maps $K \to {{\mathbf {R}}^2}$. A characterization of certain elements of $\overline {E(K)}$ is used to prove that ${E_{{\text {SC}}}}(K)$ has the homotopy type of ${S^1}$ and to characterize those elements of $\overline {E(K)}$ which are in $\overline {{E_{{\text {SC}}}}(K)}$, as well as to relate such maps to ${\text {SL}}$ embeddings into the nonstandard plane.References
- R. H. Bing and Michael Starbird, Linear isotopies in $E^{2}$, Trans. Amer. Math. Soc. 237 (1978), 205β222. MR 461510, DOI 10.1090/S0002-9947-1978-0461510-7
- Ethan D. Bloch, Simplexwise linear near-embeddings of a $2$-disk into $\textbf {R}^2$, Trans. Amer. Math. Soc. 288 (1985), no.Β 2, 701β722. MR 776399, DOI 10.1090/S0002-9947-1985-0776399-X
- Ethan D. Bloch, Robert Connelly, and David W. Henderson, The space of simplexwise linear homeomorphisms of a convex $2$-disk, Topology 23 (1984), no.Β 2, 161β175. MR 744848, DOI 10.1016/0040-9383(84)90037-5
- Morton Brown, Locally flat embeddings of topological manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 83β91. MR 0158373
- Robert Connelly and David W. Henderson, A convex $3$-complex not simplicially isomorphic to a strictly convex complex, Math. Proc. Cambridge Philos. Soc. 88 (1980), no.Β 2, 299β306. MR 578273, DOI 10.1017/S0305004100057595
- Robert Connelly, David W. Henderson, Chung Wu Ho, and Michael Starbird, On the problems related to linear homeomorphisms, embeddings, and isotopies, Continua, decompositions, manifolds (Austin, Tex., 1980) Univ. Texas Press, Austin, Tex., 1983, pp.Β 229β239. MR 711994
- Martin Davis, Applied nonstandard analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0505473
- Jacob E. Goodman and Richard Pollack, Geometric sorting theory, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp.Β 347β354. MR 809218, DOI 10.1111/j.1749-6632.1985.tb14565.x
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272β280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 723-737
- MSC: Primary 57N05; Secondary 03H99, 57N35, 57Q99
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776400-3
- MathSciNet review: 776400