Helical minimal immersions of compact Riemannian manifolds into a unit sphere
HTML articles powered by AMS MathViewer
- by Kunio Sakamoto
- Trans. Amer. Math. Soc. 288 (1985), 765-790
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776403-9
- PDF | Request permission
Abstract:
An isometric immersion of a Riemannian manifold $M$ into a Riemannian manifold $\overline M$ is called helical if the image of each geodesic has constant curvatures which are independent of the choice of the particular geodesic. Suppose $M$ is a compact Riemannian manifold which admits a minimal helical immersion of order $4$ into the unit sphere. If the Weinstein integer of $M$ equals that of one of the projective spaces, then $M$ is isometric to that projective space with its canonical metric.References
- André-Claude Allamigeon, Propriétés globales des espaces de Riemann harmoniques, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 2, 91–132 (French). MR 198391
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885
- Richard H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geometry 10 (1975), 253–276. MR 370423
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- John A. Little, Manifolds with planar geodesics, J. Differential Geometry 11 (1976), no. 2, 265–285. MR 417992
- Hisao Nakagawa, On a certain minimal immersion of a Riemannian manifold into a sphere, Kodai Math. J. 3 (1980), no. 3, 321–340. MR 604477
- Kunio Sakamoto, Planar geodesic immersions, Tohoku Math. J. (2) 29 (1977), no. 1, 25–56. MR 470913, DOI 10.2748/tmj/1178240693
- Kunio Sakamoto, Helical immersions into a unit sphere, Math. Ann. 261 (1982), no. 1, 63–80. MR 675208, DOI 10.1007/BF01456411
- Kunio Sakamoto, On a minimal helical immersion into a unit sphere, Geometry of geodesics and related topics (Tokyo, 1982) Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1984, pp. 193–211. MR 758654, DOI 10.2969/aspm/00310193
- Kazumi Tsukada, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan 35 (1983), no. 2, 355–379. MR 692333, DOI 10.2969/jmsj/03520355
- Kazumi Tsukada, Helical geodesic immersions of compact rank one symmetric spaces into spheres, Tokyo J. Math. 6 (1983), no. 2, 267–285. MR 732082, DOI 10.3836/tjm/1270213869
- Nolan R. Wallach, Minimal immersions of symmetric spaces into spheres, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 1–40. MR 0407774
- Alan Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geometry 9 (1974), 513–517. MR 390968
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 765-790
- MSC: Primary 53C42; Secondary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776403-9
- MathSciNet review: 776403