A relation between invariant means on Lie groups and invariant means on their discrete subgroups
HTML articles powered by AMS MathViewer
- by John R. Grosvenor
- Trans. Amer. Math. Soc. 288 (1985), 813-825
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776406-4
- PDF | Request permission
Abstract:
Let $G$ be a Lie group, and let $D$ be a discrete subgroup of $G$ such that the right coset space $D\backslash G$ has finite right-invariant volume. We will exhibit an injection of left-invariant means on ${l^\infty }(D)$ into left-invariant means on the left uniformly continuous bounded functions of $G$. When $G$ is an abelian Lie group with finitely many connected components, we also show surjectivity, and when $G$ is the additive group ${{\mathbf {R}}^n}$ and $D$ is ${{\mathbf {Z}}^n}$, the bijection will explicitly take the form of an integral over the unit cube ${[0,1]^n}$.References
- Ching Chou, On topologically invariant means on a locally compact group, Trans. Amer. Math. Soc. 151 (1970), 443–456. MR 269780, DOI 10.1090/S0002-9947-1970-0269780-8
- Ching Chou, The exact cardinality of the set of invariant means on a group, Proc. Amer. Math. Soc. 55 (1976), no. 1, 103–106. MR 394036, DOI 10.1090/S0002-9939-1976-0394036-3
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128 N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1967.
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 813-825
- MSC: Primary 43A07; Secondary 22D25, 22E35, 22E40
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776406-4
- MathSciNet review: 776406