Restricted ramification for imaginary quadratic number fields and a multiplicator free group
HTML articles powered by AMS MathViewer
- by Stephen B. Watt
- Trans. Amer. Math. Soc. 288 (1985), 851-859
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776409-X
- PDF | Request permission
Abstract:
Let $K$ be an imaginary quadratic number field with unit group ${E_K}$ and let $\ell$ be a rational prime such that $\ell \nmid \left | {{E_K}} \right |$. Let $S$ be any finite set of finite primes of $K$ and let $K(\ell ,S)$ denote the maximal $\ell$-extension of $K$ (inside a fixed algebraic closure of $K$) which is nonramified at the finite primes of $K$ outside $S$. We show that the finitely generated pro-$\ell$-group $\Omega (\ell ,S) = \operatorname {Gal}(K(\ell ,S)/K)$ has the property that a complete set of defining relations for $\Omega (\ell ,S)$ as a pro-$\ell$-group can be obtained by lifting the nontrivial abelian or torsion relations in the maximal abelian quotient group $\Omega {(\ell ,S)^{{\text {ab}}}}$. In addition we use the key idea of the proof to derive some interesting results on towers of fields over $K$ with restricted ramification.References
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
- A. Fröhlich, On fields of class two, Proc. London Math. Soc. (3) 4 (1954), 235–256. MR 63404, DOI 10.1112/plms/s3-4.1.235 —, Algebraic number fields, Academic Press, London, 1977.
- Albrecht Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemporary Mathematics, vol. 24, American Mathematical Society, Providence, RI, 1983. MR 720859, DOI 10.1090/conm/024
- H. Koch, Galoissche Theorie der $p$-Erweiterungen, Springer-Verlag, Berlin-New York; VEB Deutscher Verlag der Wissenschaften, Berlin, 1970 (German). Mit einem Geleitwort von I. R. Šafarevič. MR 0291139
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Annals of Mathematics Studies, No. 67, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0347778
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 851-859
- MSC: Primary 11R32; Secondary 11R11
- DOI: https://doi.org/10.1090/S0002-9947-1985-0776409-X
- MathSciNet review: 776409