General defect relations of holomorphic curves
HTML articles powered by AMS MathViewer
- by Kiyoshi Niino
- Trans. Amer. Math. Soc. 289 (1985), 99-113
- DOI: https://doi.org/10.1090/S0002-9947-1985-0779054-5
- PDF | Request permission
Abstract:
Let $x:{\mathbf {C}} \to {P_n}{\mathbf {C}}$ be a holomorphic curve of finite lower order $\mu$, and let $A = \{ \alpha \}$ be an arbitrary finite family of holomorphic curves $\alpha :{\mathbf {C}} \to {({P_n}{\mathbf {C}})^\ast }$ satisfying $T(r,\alpha ) = o(T(r,x))\;(r \to \infty )$. Suppose $x$ is nondegenerate with respect to $A$, and $A$ is in general position. We show the following general defect relations: (1) $x$ has at most $n$ deficient curves in $A$ if $\mu = 0$. (2) $\sum \nolimits _{\alpha \in A} {\delta (\alpha ) \leq n\;{\text {if}}\;0 < \mu \leq 1/2}$. (3) $\sum \nolimits _{\alpha \in A} {\delta (\alpha ) \leq [2n\mu ] + 1\;{\text {if}}\;1/2 < \mu < + \infty }$.References
- Albert Baernstein II, Proof of Edrei’s spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418–434. MR 374429, DOI 10.1112/plms/s3-26.3.418
- Albert Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169. MR 417406, DOI 10.1007/BF02392144
- Chi-tai Chuang, Une généralisation d’une inégalité de Nevanlinna, Sci. Sinica 13 (1964), 887–895 (French). MR 171922 J. Dufresnoy, Sur les valeurs exceptionnelles des fonctions méromorphes voisines d’une fonction méromorphe donnée, C. R. Acad. Sci. Paris Sér. A-B 208 (1939), 255-257.
- Albert Edrei, Solution of the deficiency problem for functions of small lower order, Proc. London Math. Soc. (3) 26 (1973), 435–445. MR 340598, DOI 10.1112/plms/s3-26.3.435
- Albert Edrei and Wolfgang H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292–328. MR 109887, DOI 10.1090/S0002-9947-1959-0109887-4 A. V. Krytov, Deficiencies of entire functions of finite lower order, Ukrain. Math. J. 31 (1979), 210-214.
- Seiki Mori, Sum of deficiencies and the order of a meromorphic function, Tohoku Math. J. (2) 22 (1970), 659–669. MR 280721, DOI 10.2748/tmj/1178242730
- Seiki Mori, Remarks on holomorphic mappings, Value distribution theory and its applications (New York, 1983) Contemp. Math., vol. 25, Amer. Math. Soc., Providence, RI, 1983, pp. 101–113. MR 730040, DOI 10.1090/conm/025/730040
- Rolf Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. MR 0417418
- Kiyoshi Niin\B{o}, Spread relation and value distribution in an angular domain on holomorphic curves, K\B{o}dai Math. Sem. Rep. 28 (1976/77), no. 4, 361–371. MR 507885
- Bernard Shiffman, New defect relations for meromorphic functions on $\textbf {C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 599–601. MR 670135, DOI 10.1090/S0273-0979-1982-15066-2 W. Stoll, Value distribution theory for moving targets, Lecture at Res. Inst. for Math. Sci., Kyoto Univ., 1983.
- Nobushige Toda, Sur la croissance de fonctions algébroides à valeurs déficientes, K\B{o}dai Math. Sem. Rep. 22 (1970), 324–337 (French). MR 268380
- Hermann Weyl, Meromorphic Functions and Analytic Curves, Annals of Mathematics Studies, No. 12, Princeton University Press, Princeton, N. J., 1943. MR 0009057
- Hung-hsi Wu, The equidistribution theory of holomorphic curves, Annals of Mathematics Studies, No. 64, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0273070
- Lo Yang, Deficient functions of meromorphic functions, Sci. Sinica 24 (1981), no. 9, 1179–1189. MR 655932
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 289 (1985), 99-113
- MSC: Primary 30D35; Secondary 32H30
- DOI: https://doi.org/10.1090/S0002-9947-1985-0779054-5
- MathSciNet review: 779054