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ON CONTRACTIONS OF SEMISIMPLE LIE GROUPS
BY

A. H. DOOLEY AND J. W. RICE

Abstract. A limiting formula is given for the representation theory of the Cartan

motion group associated to a Riemannian symmetric pair (G, K) in terms of the

representation theory of G.

Introduction. Let G be a connected Lie group with Lie algebra g, and H a closed

subgroup with subalgebra b. The coset space G/H is called reductive [9, p. 389] if h

admits an AdG(H) invariant complement m in g; i.e. a subspace m c g such that

(i) g = b + m (direct sum),

(ii) AdG(H)m c m.

In this case we can form the semidirect product m "A H with respect to the adjoint

action of H on m. In this paper we shall restrict ourselves to the case where G is

semisimple with finite centre and (G, H) is a Riemannian symmetric pair [10, p.

209]. Hence H is contained in the fixed point set Ha of an analytic involution a of G,

it contains the identity component (Ha)e and Adc(H) is compact. Following

custom, we write K and f rather than H and b in this instance. It is well known that

K is compact [10, p. 252] and connected if G is noncompact. Furthermore f is the

+1 eigenspace of doe. We make the natural choice for m, namely the -1 eigenspace

V of dae. When G is noncompact dae is a Cartan involution. Then V is usually

denoted p and g = f + /? is called a Cartan decomposition [10, p. 182]. When G is

compact one can choose a real form g0 of the complexification gc of g, and a Cartan

decomposition g0 = k + /? such that V = ip, i.e. g = f + ip [10, V, §2].

The semidirect product F X AT, in the situation described above, is called the

Cartan motion group associated to the pair (G, K). The idea of relating the

representation theories of V X K and G has been prevalent in the literature (cf.

notably [11, 13, 18]). In particular, V XI K is a contraction of the Lie group G in the

sense of [11], and there has been some interest in understanding the relationship

between the representation theories of V X K and G that this implies (cf. particularly

the footnote on p. 343 of [17]). The aim of this paper is to give such a precise

relationship. A key ingredient involved is the global counterpart of the contraction

of the Lie algebra of G to that of V X K. It is the family of smooth maps

wx:     VXK^G

(vk) -» expc(X¡;)A:.

These are homomorphisms to within 0( X ) as X <-* 0.
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In §2 we give a brief discussion of contractions of Lie groups and indicate how the

Kirillov-Kostant method of orbits suggests the relationship between the representa-

tion theories of a Lie group and a contraction of it. In §3 we give the description of

the unitary irreducible representations of V XI K by Mackey's semidirect product

analysis [19]. In particular we consider the family p^ of irreducible representations

which are called the generic irreducible representations of F XI K. These are para-

metrised by a linear function ifona maximal abelian subalgebra a of V, and an

irreducible representation r/ of M c K, where M is the centraliser of A = expc a in

K. They form a set of full Plancherel measure in the unitary dual of F XI AT [14].

The irreducible unitary principal series representations of a noncompact semisim-

ple Lie group G, with finite centre, can be given exactly the same parametrisation as

the generic irreducible representations of F X) K. We describe this in §4 and give our

first main theorem, Theorem 1, which shows how the sequence o„^ of principal

series representations approximates p^ in a weak sense when composed with the

global contraction map ttx/„.

In §5 we prove the analogue of Theorem 1 in the compact case (Theorem 2). Once

again we show how a family of irreducible representations of the compact group G

can be parametrised by a linear function \p G a* and an irreducible representation r/

of M. This is a version of the Borel Weil theorem. However, the xp's which actually

give rise to representations of G are not arbitrary elements of a * but form a cone of

a lattice in it. Hence, if \p G a* is arbitrary, and we wish to approximate the

irreducible representation p^ we will not usually have available the sequence of

irreducible representations of G of the form anti>n, as in the noncompact case. Instead

we must choose a sequence \px, v^2,... from the cone of the lattice in a* so that

\p„/n -* t//. Another problem is that, in contrast with the noncompact case, M and A

may intersect, and this forces compatibility requirements between \p and tj which

affect the choice of the sequence \px, \p2,_ Theorem 2 shows how, with the

appropriate choice of sequence, a^ composed with ir1/n approximates p^ n in a

weak sense. The special case of this theorem where G = SO(n + 1) and K = SO(n)

was proved in [5]. An infinitesimal version for spherical functions was proved in [4].

In §6 we describe how to extend our results to the case of nongeneric irreducible

representations p. v of F XI K. In this case r¡ is an irreducible representation of the

stabiliser K^ of \p under the coadjoint action of K on V. We replace M by K^ and A

by exp a^ , where a^ c a is the centraliser in a of the Lie algebra f ̂  of A"^,. In the

noncompact case we replace the principal series representations of G by the

appropriate //-series (//being a Cartan subgroup) and the arguments of Theorem 1

go through much the same to give complete results for the nongeneric case. If G is

compact, then intersection of K^ with A causes difficulties in repeating the argu-

ments of Theorem 2. This leaves the results of the compact case a little incomplete.

2. Deformations and contractions of Lie groups.

(2.1) Definition. Let g and qx be two Lie algebras with the same underlying

vector space <%. We say that qx is a deformation of g if there is a set (<K)xeR+£

^^(*)sothatlimx^0<í.-A1[<í»x^</>x>']a = [*, v]a, for all x,y G «r.
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This definition goes back to Saletan. A number of results about deformations have

been proved, for example [21, 22]. However, the definition seems too general to be

useful in our context. Our main interest lies in a special case of this notion, a

contraction. Before we pass to consideration of contractions let us record

(2.2) Lemma. Suppose g is a Lie algebra with underlying vector space <% and

(<r»x)x»ir£ «#(*) is such that for all x,y&®, [x, y], = lim^,,^1!***, <¡>Áy]

exists. Then [ ]x is a Lie bracket on 'Wand the resulting Lie algebra g, is a deformation

of a,.

(2.3) Definition. Let g be a Lie algebra with underlying vector space °U and let f

be a Lie subalgebra. Let F denote a subspace of ^complementary to f. Thus x G ¿U

can be uniquely written x = x{ + xv. For X g R+, define a map <j>x g &£?(<%) by

<t>\(x) = xt + Xxv.

The proof of the following lemma is computational and is left to the reader.

(2.4) Lemma. Let x,y^°U. Then \imx^,0<t>~xl[<f>xx,<t>xy] exists and is equal to

[x, y]x = [xt, yt] + ([xt, y])y + ([x, yt])v. Thus [ ]x is a Lie bracket on 'Wand the

resulting Lie algebra is a deformation o/g.

A deformation arising in this way is called a contraction with respect to I. Notice

that g, contains F as an abelian ideal and that f = Qx/V.

In the special case where F is ad, invariant (i.e. [f, F] ç F) we have [x, y]x =

[xf, yf] + [x{, yv} + [xv, yt].

Contractions were introduced by Inönu and Wigner [13], who wished to study

relationships between the representation theories of the two groups. Indeed, [13]

contains a number of examples, for specific groups, of limiting behaviour for special

functions, which are special cases of our main theorems. Other special cases have

been worked out, see for example [16, 20], or Chapter 10 of [6].

We now globalize the above definitions by replacing g by a Lie group G and f by a

Lie subgroup K.

(2.5) Definition. Let G be a Lie group and K a Lie subgroup, reductive in G.

Thus,   we   can   write   g = f ffi F,   where   the   decomposition   is   Ad^  invariant

(Aà(K)V ç F). Let V X K denote the semidirect product of F by A" relative to this

action. Define ttx: V X K -» G by irx(vk) = expG(Xv)k for each À g R+.

(2.6) Proposition. The Lie algebra of V XJ K is precisely g, of Lemma (2.4).

Further, the differential ofTtx at the identity is precisely the map 4>x of (2.3).

Thus, we are justified in making the following definition.

(2.7) Definition. The semidirect product V XI A" is called a contraction of G with

respect to K, and the family (ttx)X(£R+ of maps F XI K -» G is called the family of

contraction maps.

Our canonical example of a contraction is that outlined in the introduction, where

(G, AT) is a Riemannian symmetric pair and the contraction of G with respect to K is

the associated Cartan motion group. It seems, however, that some of the methods
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used here might extend to further examples, for instance where K is noncompact.

Indeed, there are infinitesimal results in this setting (cf. [11]).

The Kirillov-Kostant method of orbits [2] gives further evidence of a definite

relationship in general between the irreducible representations of a Lie group and a

contraction of it; indeed the method of orbits inspired us to the theorems of this

paper. One considers the orbits of a Lie group G under the coadjoint action on the

dual g* of its Lie algebra. If G^ is the stabiliser of ^ G g*, one calls the orbit

through ip integral if there is a character x of G^ such that dxe = 2rriip on g^,. One

then forms the G-module induced from x- The set of such G-modules so obtained

(from various possible choices of x) depends only on the coadjoint orbit through ip

and not ip itself. From further geometrical data, namely a choice of polarisation on

the orbit [2, 7], one can produce irreducible representations of G.

The simplest example will now serve to make our point. Let G = 50(3) and K be

the subgroup leaving, say, the z-axis fixed. The Lie algebra èo(3) is identified with

R3 and the family

<Px-     R3 - R3

(x, y, z) -> (Xx, Xy, z)

defines a contraction of ëo(3) with respect to f. The contracted group is the

Euclidean motion group of R2, i.e. M2 = R2 X 50(2). Each circular cylinder with

axis the z-axis is an integral orbit of the coadjoint action of M2 on m* = R3. Each

sphere of integer radius with centre 0 g R3 is an integral coadjoint orbit of 50(3) on

ëo(3)* = R3. In these cases, despite the possible choices of characters and polarisa-

tions, each orbit produces a unique irreducible unitary representation of the group

concerned. Let pR be the representation of M(2) deriving from the cylinder of radius

R > 0, and an the representation of 50(3) deriving from the sphere of radius n g N.

If we let A„ = R/n, then the image of the sphere of radius n under <j>x is a cigar

shape (for Xn < 1) of height n, which is tangent to the cylinder of radius R along

their intersection with the x-y plane. The sequence of images for n = 1,2,... is a

sequence of cigar shapes which converges, in a sense, to the cylinder. Loosely

speaking one may say that, upon following through the Kirillov-Kostant construc-

tion, the associated representations exhibit a similar convergence; that the sequence

an, distorted by the values ttx of the global contraction, converge in a sense to pR.

In general, if G is a contraction of a Lie group G, then to each integral coadjoint

orbit of G we expect to find a sequence of integral coadjoint orbits of G converging

to it under the adjoint of the contracting family, as in the example above. We would

further expect to produce a convergence of associated irreducible representations.

Theorems 1 and 2 of this paper realize these ideas in the case of the contraction of a

Riemannian symmetric pair to its associated Cartan motion group. It has proved

more convenient in this case to expound the representation theory in the more

conventional form, rather than to persist with the coadjoint orbit description.

3. Irreducible representations of Cartan motion groups. Let (G, K) be a Rieman-

nian symmetric pair. We summarise the description of the unitary dual of the

associated Cartan motion group V X A" via Mackey's normal subgroup analysis [18,
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19]. We consider V X K as the group generated by Fand A" subject to the relations

kvk-1 = Ad{k)v   Vv G V, k G K.

Any character x of the vector group V can be uniquely expressed as e'* for some

ip g V*, and this identifies the character group V with the dual space F*. For

Mackey's analysis one must consider the action of A on V defined by

k ■ x(v) = x(k~lvk) = e'*(Ad(k-h)))

which clearly coincides with the coadjoint action of A" on F*. For any ip g F* let

K^ be the stabiliser of ip under the coadjoint action of K, and let tj be an irreducible

unitary representation of K^ on some Hilbert space Hv. Then e'* ® 17 is an

irreducible representation of the subgroup F X A"^ on //,, namely

e'* ® ri(vm) = e'*(v)n{m)    Vv g V, m g Kr

The representation of F X K induced from e'* ® r¡ gives rise to an irreducible

unitary representation which we denote by p^ . Every irreducible unitary represen-

tation of F X A" occurs in this way [19, Theorems A and B, pp. 42, 43].

By its definition p^    acts on a space of functions/: V X K -* //„ satisfying

e'*{0)r)(m)f{gvm) = /(g)    Vv g V, m G K+, g g F X K.

Consequently,

f(vk) =f(kAd(k-l)v) = e-<*<A«*-»./(jfc)

and any such / is uniquely determined by its restriction to K. For the representation

of p^ v one considers only those functions whose restrictions to A" lie in L2(K, Hv).

These restrictions comprise the closed subspace H^ v of L2(K, Hv) whose functions/

satisfy

■q(m)f(km) = f(k)   Vm G A^,,/c g A~.

In this way the representation space of p+ v inherits a Hilbert space structure on

which p^    acts unitarily. Note that

*.»(«*)/(*•) "/(*"l(-*)*o) =/(A:-1A:oAd(A:ô1)(-f;))

= e'*<Ad(*5I><')/(A:-1/k0)

which allows one to define p^, ̂  directly on^,

In order for two irreducible representations p^ and p^ to be unitarily

equivalent, it is necessary and sufficient that ipx and ip2 lie in the same coadjoint

orbit of K, and that r\x and tj2 be unitarily equivalent (note that K^ and K^ are

conjugate subgroups in this case). Because K is compact we may endow F with an

Ad(A")-invariant inner product ( , ) (for example, the Killing form restricted to V)

by which we identify F with V*, and the adjoint with the coadjoint action of A". Let

a c F be a maximal abelian subalgebra of V. Every adjoint orbit of A" in F intersects

a [10, p. 247]. Hence every irreducible unitary representation of F X K has the form

p^ v, where ip has the form v -» (H,v) for some // g q. Such a ^ can be regarded as
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an element of a * which has been extended uniquely to F by making it 0 on the

orthogonal complement of a. In this sense the unitary dual of F X A" is described by

the representations p^    with ip g q *.

For ip g F* of the form v •-» (H, v), K^ is the same as the stabiliser of H under

the adjoint action of A". Let A = expc a and M be the centraliser of a in A". Except

on certain hyperplanes, the root hyperplanes, the stabiliser of H G a is M [10, p.

263]. We call such Z/'s, the corresponding ip's and associated irreducible representa-

tions p^ generic. Because the nongeneric elements of a have Lebesgue measure

zero, one can show that the nongeneric irreducible representations in the unitary

dual of F X K have Plancherel measure zero [14]. In what follows we shall be chiefly

concerned with the generic case.

4. The noncompact case. Let (G, K) be a Riemannian symmetric pair of the

noncompact type. Let a c F be a maximal abelian subalgebra of V, A = expc a,

G = KAN an Iwasawa decomposition, and M the centraliser of A in A" [10, p. 270]. If

y g a* ® C and tj is an irreducible unitary representation of M, we define the

representation ey ® r\ of MAN by

ey ® tj: wa« -» ev<loga)r|(w)    Vm G M, a G ,4, « G JV,

where log a g a is defined by a = expG(log a). A principal series representation of G

is one induced from a representation ey ® tj of MAN. As such, it is realised on a

space of functions F: G -* Hv, where H   is the representation space of tj, and

satisfying

ey<loga)Tj(w)/(gwan) =/(g)    Vg g G, wan g AMA*".

By the Iwasawa decomposition, such functions are clearly determined by their

restrictions to K.

In general, principal series representations do not give rise to unitary representa-

tions. Where they do their representation spaces consist of the functions satisfying

the above condition, and whose restrictions to K lie in L2(K, Hn). These restrictions

comprise the subspace of L2(K, Hv) whose functions/satisfy

r)(m)f(km)= f(k) Vk g A, m g M.

The representation space is thus endowed with a Hilbert space structure. A principal

series representation acts unitarily on this Hilbert space if and only if y = p + iip,

where ip g a* and p G a* is a particular linear map; its form will not concern us,

but for the sake of completeness we note that [23] jti = Y.aeP*maa, where P+ is the

set of positive restricted roots and ma is the multiplicity of a [10, p. 264]. By a^ we

denote the unitary principal series representation of G induced from ei-'l+"l') ® tj, and

by H^   its representation space.

To any generic irreducible unitary representation of F X AT, p^n, we can associate

the sequence {an. }f of unitary principal series representations of G. We shall

show how this sequence approximates p, . For this we will need the global

contraction

ttx:     VxK^G

vk -* expG(Xv)k
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and the function

•V     G-> C

kan -> e-'W°&a).

Obviously s^ is A" invariant and has the value 1 on A. Furthermore, if / g Hn^ then

s^f g H(n+X)^ , and s^f has the same restriction to K as/. Thus multiplication by s^

identifies Hn^ with H{n + X)xl/Tl in a way that identifies functions with the same

restriction to K.

(4.1) Lemma. If H g a and Jief + n, then

^(exPc(// + tX)) = s^xpGH) + 0(i2).

Proof. Write X = Xx + X,, where Jf,eï and X2 g n. Both f -* expc(// + fA')

and t -» expc iA^ • expc H ■ expc iA^2 have the same tangent vector at t = 0, so that

t -» s4,(expG(H + tX)) and t -» s^,(expGtXx ■ expc// ■ expGtX2) have the same

derivative at t = 0. By the definition of s^ the second function is constant and so has

derivative zero. The lemma follows by Taylor's theorem.

(4.2) Corollary. Let ip g a* and extend it to V via the Killing form, i.e. represent

ip(-)= <//,-> for H G a. Thens¡(expG-v/n) = emv) + 0(l/n).

Proof. Let v = vk + va + v„, where uÁeí,oaea, i>„ g n. By the lemma

Mexpc-«?/«) = s+(expc-i?a//i) + 0(l/n2).

By the definition of s^

s4,(cxpG-va/n) = e+i1'(va/n).

Hence

i£(expc-Py»)-*'*<"«>+0(1/»).

Since f, a and n are orthogonal under the Killing form, ip(va) = ip(v).

(4.3) Theorem 1. With the notation above, define

^.r,{vk):f ^ an^ A\rrx/n(vk)\(s'¡f)

Vvk g F X AT andf g H0 ,. Then

Lim o-^,„(t^)(/)|K = P+ ,,("*)(/| J-

T«e Am// is in the sense of L2(K, H ).

Proof. For / g //0 r), vk g F X A" and â:0 g A" we have    -

°n+,r,{vk)f(k0) = o„4,„[ir1/n(vk)](s%f)(k0)

- *í(((«ife(5)*r*o)
= ^(^-1/c0expc-Ad(/c01)^)/(^-^0expc-Ad(/có1)^).
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By the AT-invariance of s^ and the corollary above

^(jfc-^oexpc- Ad(k-01)^ = e<*<Ad(*„-V)+0|Ij.

Hence

[•]

S^(vk)f(kQ)-e'*<>*#"f(k-%)

+ ei>KAd(kö')o) ^expc(-^0)-/(^0)] + o(¿).

Since

P*Jvk)f(ko) = e'*^k^f{k-1k0),

we obtain

n
\K.M)(f) - *.,(«>*)(/, J]] = |o-0,„(expc(^))/u - /

where || || is the norm on L2(K, Hn). The theorem follows by the strong continuity of

CT0.7T

(4.4) Corollary. /// g //0î) is a smooth function, then

wii« ?/¡e estimate uniform on compact subsets of V X A.

Proof. For such an/

/(¿-exp^) =/(*-'*„)+ o(M)

by the mean value theorem, and the smoothness of / guarantees uniformity of the

estimate on K. Hence equation [ * ] in Theorem 1 can be replaced by

W*)/(*o) = «^'"'/(k-1*,) + 0(l/n)

and the corollary follows.

5. The compact case. We shall describe the irreducible representations of a

compact connected Lie group by a form of the Borel-Weil-Bott theorem [25, Chapter

6]. Let g be the Lie algebra of G and gc = g ® C its complexification. We let g and

gc act on C°°(G) as left invariant vector fields; i.e. for A1 G g and/ G C°°(G)

(i) Xf(g) = -^f(gexpsX)¡s=0   VgGG

and for Iegc

(ii) Xf = XJ + iXJ   where X = Xx + iX2, Xt,X2(= g.

Fix a maximal torus T with Lie algebra t. The adjoint action of T on gc decomposes

into a sum of characters e", a e t*. The «'s which occur are called the roots of gc

with respect to T, and the one-dimensional representation space ga c gc of e'a is
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called the root space of a. The characters occur in pairs e'a, e~'a, and by suitably

ordering t [12, p. 47], one chooses one out of each pair a, -a of roots as being the set

<$ + of positive roots. Let n be the sum of the positive root spaces, i.e.

(i") « =    £   fla.
ae<J> +

For any character x of T, the subspace of C°°(G) satisfying

(iv) X(t)f(gt)=f(g)    ViGT,gGG,

(v) Xf=0   VA-Gn,

where/g C°°(G), is invariant under the left regular representation. The restriction

of it to this subspace is called the representation of G induced holomorphically from

X, and we denote it^. Condition (iv) is the usual induced representation condition,

and (v) is called the holomorphy condition.

The Borel-Weil-Bott theorem asserts that every irreducible representation of G has

the formJÉ^ for some unique x, and that in general^ is either irreducible or zero.

Furthermore, let us use the Killing form ( , ) of g restricted to t to represent each

root a in the form (ta, -) for some t„ g t.Jí?x is nonzero if and only if

(vi) dXe(ta)zO   V«g$ + .

We shall now convert the Borel-Weil-Bott description of the irreducible represen-

tations of a compact connected semisimple Lie group G into a form resembling the

principal series of a noncompact such group. Let (G, A") be a Riemannian symmet-

ric pair of compact type and, as before, let a c F be a maximal abelian subalgebra

of V, A = expca and M the centralizer of A in K. Since A is a torus, its centralizer in

G is connected [10, p. 287], and in fact has Lie algebra m + a [10, p. 263]. The

centralizer must therefore be Me ■ A [10, p. 271], where Me = expc m is the identity

component of M. Hence MA = Me ■ A and M = Me ■ (M n A). Note that since

M n A is abelian, compact and has Lie algebra m n a = 0 it is a finite abelian

group. Furthermore, if a is the involution of (G, A") and w g M n A, then a(m) = m

because m g K, and a (m) = m'1 because w g F, hence M n A consists of involu-

tions. We summarise these well-known arguments in the following proposition.

(5.1) Proposition. The centraliser of A (in G) is MA and this equals MeA, where

Me is the identity component of M. Hence M = Me ■ (MOA), where M Pi A is a

finite abelian group of involutions.

(5.2) Proposition. The irreducible representations of MA are tj ® e"\ where

ip g a * satisfies

ei>HH) _ i    whenever expG(H) = e,

where tj is an irreducible representation of Me such that i)(a) is multiplication by e'^(a)

for each a G Me n A, and where tj ® e'* is defined by

tj ® e'^ima) = e">'(a)ri(m)    Vm G Me, a G A.
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Proof. Since A centralises MA, an irreducible representation restricted to A must

act as scalar multiplication by a character. Since, by Proposition 1, MA = MeA, its

restriction to Me must also be irreducible. The characters of A have the form

(vii) expG(//) -> e'^H)   V//GQ,

where ip g a * satisfies

(viii) e"M«)=i    whenever expc(//) = e.

An irreducible representation of MA therefore has the form stated in the proposi-

tion.

The realisations of the irreducible representations of Me and G given by the

Borel-Weil-Bott theorem are defined by choices of maximal tori and of positive root

systems with respect to these. We want to make compatible such choices in the

following sense.

(5.3) Definition. Let Tx be a maximal torus of Me. Then Tx = TXA is a maximal

torus of both MA and G.

Let $+ be a set of positive roots of gc with respect to T; whence a g ß* is a root

of (m + a)c if and only if it is a root of gc and ga c m. Define

(ix) P= {aGO+|gacmc},

(x) P + = {aG$+|ga£ mc}.

Then P_ is a positive root system for Mc with respect to Tx, in the sense that ait,, for

each a g P_ form such a positive root system.

We say that Tx and T are compatible choices of maximal tori for Me and M and

that $ + and P_ are compatible choices of positive root systems with respect to them.

In terms of compatibly chosen maximal tori and positive root systems we define

the representation of G holomorphically induced from the irreducible representa-

tions of MA.

(5.4) Definition. Let tj ® e'* be an irreducible representation of MA.

Let Tx and T be compatible maximal tori of Me and G, and let $+ be a system of

positive roots of G with respect to T, and let P_ and P+ be defined as in Definition 1.

Let H be the representation space of tj defined by Tx and Px. Hence there is a

unique character Xi of Tx such that H is the space of smooth functions for Me

satisfying

(xi) Xit,)f{mtx)=f(m)    Vtx^Tx,m^Me,

(xii) A/=0    VA"G«_,

where

(xiii) n_=   £  0«-

On the space C°°(G, //,,) of smooth functions F: G -» Hn we let gc act as left

invariant vector fields, and for each Iegc define V^ by

(xiv) vxF(g)(m)= [Ad(m)X] ■ F{g)(m)    Vm G Me,g G G.



ON CONTRACTIONS OF SEMISIMPLE LIE GROUPS 195

Let

(xv) n+=   £  Qa-
ae/>+

The representation o^ of G, holomorphically induced from tj ® e'*, is the

restriction of the left regular representation on C°°(G, Hv) to the subspace of

functions F satisfying

(xvi) tj ® ei+(ma)F(gma) = F(g)    Vg g G, w g Me, a g A,

(xvii) VA-F=0   VX^n + .

There is a natural identification between the representations o+ described above

and those holomorphically induced from characters of T. For suppose that tj ® e'* is

an irreducible representation of MA and tj is induced holomorphically from the

character Xi of Tx. Then Xi and e1* agree on Tx n A. Indeed, because Me n A is

central in Me, and Tx is maximal abelian, Me P A = Tx Pi A. Moreover Tj(a) is

required to act as multiplication by e'4'(a) for each a e. MeP A, but (xi) shows that

it must act as multiplication by Xi(a)- Since e'* and Xi agree on Tx P A, they define

a character x of T = TXA by

XM = xM**(a)   VhGT,aeA.

We then have

(5.5) Proposition. Let tj ® e"*1 be an irreducible representation of MA. Let Tx and

T be compatible maximal tori of Me and G, let <f>+ be a system of positive roots of G

with respect to T, and let P_ and P + be defined as in Definition 1. Let Xi be the

character of Tx from which tj is holomorphically induced, using P_ to define the

holomorphy condition. Define the character x°f T by

(xviii) x(h<>) = xAh)el*(a)   Vtx^Tx,a^A.

For each F G CCC(G, Hn) define F by

(xix) F:g^F(g)(e)    Vg g G

and for each / g CX(G) define f by

(xx) /(g): tn -*/(gw)    VwGMe,gGG.

Then F -» F defines a morphism of representations a^ v —> 34?x whose inverse is f >-> f.

It follows that each a^ is either irreducible or zero, and that each irreducible

representation of G occurs in this form for a unique choice of tj and ip.

In order to formulate an analogue of Theorem 1 for a compact Riemannian

symmetric pair we require A"-invariant functions to play the role of s^, (see §4). We

require these to belong to the representation spaces of certain of the representations

a^ r An irreducible representation of G containing a AMnvariant vector is called a

AT-class 1 representation. In respect of these we have

(5.6) Theorem (Cartan [3], see also [15]). An irreducible representation a^n of G

is K-class 1 if and only if tj = 1, the trivial representation of M. The subspace of

K-invariant vectors is one-dimensional.
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As to the existence of irreducible representations of the form a^x, we have the

following well-known result.

(5.7) Proposition. There is a basis <px,...,<p¡ of a* for which a(>¡,,... ,a^ x are

nonzero (hence irreducible) representations of G.

Proof. If a is a root of gc with respect to T, let a be its restriction to a. Note that

e"* is the restriction to A of the character e'a of T. Recall that ä is called a restricted

root, is called positive if a G P + and simple if it is positive and not the sum of two

other positive restricted roots. If ßx,...,ß, is the set of all simple restricted roots,

then they are a basis for a [10, p. 292]. We define <p, = 2/3, for i — l,...,l. By the

remark above, for each ; = 1,...,/, e"f>' is a well-defined character of A, and since

e'*1 = (e'ß')2 and M P A consists of involutions, it agrees with the trivial representa-

tion 1 of M on M P A. Hence a^ x is well defined.

We claim that, for each / = 1,.. .,l,a^ x is nonzero. Indeed, a^ x = 3t?x , where x, is

the character of T whose restriction to Tx is 1 and to A is e"*"'. Hence -idxie vanishes

on t, and equals <f>, on a. If /3, = a", and a; is represented by ta under the Killing

form, it follows easily that idxle = (aa,~), where ta = t'a¡ + aa with t'a et,,

aa g a. For any positive root a, represented by ta under the Killing form, we then

have [10, p. 291]

-"*X,e('J= (aa,aa)<0,

where ta = t'a + aa, ta g tlf aa g a. Hence^ , and thus a^ x, is nonzero.

From now on, we fix the basis <px,... ,<p¡ of a * as in Proposition 5.7 above.

(5.8) Definition. For each i = l,...,l let s¡ be the unique AT-invariant vector of

Oq j whose value on A" is 1.

(5.9) Lemma. For each k = 1,.. .,1 and v g V

\sk(expG - tv) - e"*1'"»! = 0(t2).

Proof. Regarding each v g F as a tangent vector to G at e, the result follows by

Taylor's theorem, once we prove

v ■ sk = '<t>k(v)    yv G v-

Let V = a + a(), where a0 is the orthogonal complement of a under the Killing form,

and let a = a0 ® C. By [10, p. 288], a is spanned by Xa - 0Xa, a G P + , where

Xn g ga. Since Xa + 6Xa lies in f c, and sk is AT-invariant

(A-a + cLYj-^ = 0    VaG/V

By the holomorphy condition defining a^ ,, and since vxs(e) = Xs(e), we have

Xa - í = OVa G P+. Hence

v sk = 0 = i<pk(v)    Vv<Eq0.

If f g a, then by the induced representation condition

^(expc - tv) = e^°})s(e) = eiMv)

so that v ■ sk. = i<pk(v). This completes the proof.
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(5.10) Definition. For each c = (c,,... ,c,) g N' define sc = si'1 - s22 ■ ■ ■ sf'.

(5.11) Lemma. Let ip = yx<px + • ■ • + y,<p, with y = (yx,... ,y¡) G R'. Let {c„}f be

a sequence in N' such that

ck,/n = Yk+ 0(l/n)    where cn = (cXn,.. .,c,„).

Then |s'"(expc v/n) - e'*{v)\ = 0(1/n).

Proof. By Lemma 5.9

\\nsk(cxpG- v/n) - i<pk(v)\= 0(l/n2)

and so, since ckn = O(n)

|c*„lns*(expc - v/n) - ickn<pk(v)/n\ = 0(1/«)

and

\ckHlnsk{expc -v/n)- iyk<pk(v)\= 0(1/«).

Adding these for A: = 1,..., / gives

|lni'"(expc - v/n) - iip(v)\= 0(l/n)

from which the lemma follows.

We now proceed to formulate the theorem describing how each generic irreducible

representation p^ of F X A" is approximated by a sequence of irreducible represen-

tations of G. First note that if tj is an irreducible representation of M, then, as

observed above, its restriction to M P A acts as multiplication by a character of

M P A. This character can be extended to a character of A. Indeed, since M P A

consists of involutions it is easy to describe such extensions explicitly. Hence, given

tj, there exists a character e"^0 of A such that o^ is defined (although it may be

zero). Secondly, by the definition of <£,,...,<£, and [10, p. 323], every coadjoint orbit

of AT in V* not only passes through a*, but contains a ip such that ip = yx(j>x +

■ ■ • + yx<p, with yk > 0, k = 1,...,/. Hence, for each irreducible representation p^

of F X A" we may assume ip to have this form. Moreover, p^ is generic if and only if

yk > 0, k = li...,/.

(5.12) Theorem 2. Let p^ be a generic irreducible representation of V X K, where

^ = Yi^i + • • • + y¡<Pi with yk > 0, k = 1,...,/. Let {cn}f be a sequence of ¡-tuples

of nonnegative integers such that

c„k/n = yk + 0(1/«),       k = l,...,l,wherec„= (cnX,. ..,cnl).

Let ip0 g a * be such that a^     is defined and let ipn = ip0 + cnX<px +  • • • + cnl<p/. Let

Jt?n be the representation space of a,    . Then,

(i)3f„ =t Ofor large enough n.

(ii) For each p g N, « >pandf^3ep,sc'-c- ■ j'g 3ti?n. Define, for f e/p

<V.;,(«*)C/) - *..,(»l/»(«*))(*e""C'/)-
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Then

(iii) \a^(vk)(f)(k0) - p^v(vk)(f)(k0)\ = 0(1/«)
and hence

K„.,(«*)(/)(*o) - Am(0*)(/)(*o)|I = 0(1/«)

inL2(K,Hv).

(iv) // J^„\ denotes the functions which are restrictions to K of those in JFn, then

^1   cjf< + 1||¡ and{J^=xJífn^is dense in H^^, the representation space of p^^.

Proof, (i) Let tj be holomorphically induced from Xi- Then a^ = 3^x, where x is

defined on T = TxAby

x(tla) = Xi(ti)e,*"(a)    Vtx g T,a^A.

Now for any positive root a of gc with respect to T, -idxe(ta) = -idxui1'«) + »M0«)'

where (aet represents a under the Killing form, and ta = t'a + aa with t'a G ïx and

aa g a. If a g P , then aa = 0 and -/¿XievO ^ 0 because tj is nontrivial. If

a g P + , then, by definition of <pk, <pk(aa) < 0, k = 1,...,/, and not all of these are

zero. Hence, because yk > 0, k = l,...,l, ip„(aa) -* -oo as « -* oo, and -idxe(ta)

< 0 for « large enough. It follows that a^    is nonzero for « large enough.

(ii) Let / G Jfp and consider sk ■ f. Note that by the definition of a^ x, sk is a

function G -» C so that the product makes sense. We show that skf belongs to the

representation space of a^ +<t¡ . Repeated application of this result for k = l,...,l

gives (ii). Now skf, G -> Hv, and for wa g MA and g g G

e'(^ + ̂ >(a)Tj(w)íA./(gwa) = e",>*(a)s(gwa)e",'''(a)r)(w)/(gwa)

= sk(g)f(g) = skf(g).

Moreover, by the holomorphy condition in Definition 5.4

Va-5*/= VxSk-f+sk- V*/=0    VA-Gn + .

Hence skf g a^ + ̂ „.

(hi)

¡V„.,(»*)(/)(*o) = (sc"~c> •/)(*-1expc(-^)A:0)

= ^»-'^-^0expc(-Ad(/c01)^))/(^-1^oexpc(-Ad(/:0-1)^))

= í'»-'í.(expc(-Ad(Ao1)^))/(/c-^0expc(-Ad(/c0-1)^)).

Now

,i*(Aa(k¿l)v) o'1
«

^-^exp^-Ad^1)^))-*

by Lemma 5.11, and

/(¿-^«^(-Adto1)^)) -/(^-^0)|= o(£)

by the mean value theorem. Therefore we have

k ,(«*)(/)(*„) - iV.,(o)(/| J(*o)| = 0(l/n).
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Since sc" c' and/are real analytic, the 0(1/n) estimates are uniform on K. Hence

by integration over K, we obtain

lk„„(^)(/)i* - am'(**)(/i JI = 0(v«)-
(iv) Since sc"~c' has the value 1 on K, sc"~c"f has the same restriction to K as/for

each/ g jf? Hence for every « > /?, Jífpli¡ Q ^„\K- From (iii) it follows that for each

vke. V X A" and / g jfp, p+,„(ü*X/i*) lies in the L2(A", //„) closure of U^Jf^.

By (i) this is nonzero, and so carries a nonzero subrepresentation of p^ . Since p^ is

irreducible, the closure in L2(K, //,) of U™=1^|K must be //^

6. The nongeneric case. Recall that the irreducible unitary representations of the

Cartan motion group F X K have the form p^ (see §3), where ip g a* and tj is an

irreducible unitary representation of K^, the stabilizer of ip under the coadjoint

action of K on V. Generically K^ = M, the stabilizer of a under the adjoint action.

But certainly one can have K^ 3 A/. We call this the nongeneric case and we discuss

the corresponding extensions of Theorems 1 and 2, with certain exceptions in respect

of Theorem 2. Note that nongeneric refers to the representations of F X AT and not

necessarily to the approximating ones from G.

Fix a maximal torus Tx of K^ with Lie algebra t, and let ax be the centralizer of tx

in a. Then f)c = (t, + ct)®cisa Cartan subalgebra of gc and we let 0 be the set of

roots of gc with respect to t)c. The centralizer of alc in gc is

(i) «tu> £        9a-
ae<&, a(a,) = 0

If Ax = expG a! one can show that the centraliser of Ax in G has the form MXAX,

where Mx is a reductive 0-stable subgroup of G with Lie algebra mx, the real part of

mlc (under the conjugation of gc with respect to g).

If (G, A") is a Riemannian symmetric pair of noncompact type, then [24] Mx P Ax

= e, and A/, = Mx P K is a maximal compact subgroup of Mx. Choosing a set 3>+ of

positive roots of gc with respect to fjc we define, as in §4

(ii) P_= [a G $+|a(//) = OVH^ ax},

(iii) P + = {aeO>íP_},

(iv) n + =    L   0a-
ae/>+

Let n be the real part of nc and N = expc n. Then P = MXAXN is a parabolic

subgroup of G, and we define an irreducible representation tj' ® ey of P by

(v) tj' ® ey(man) = e7(a)rj'(w)    Vman G MXAXN,

where tj' is a discrete series representation of Mx, y g af and eY is the map

a >-> eY(logü). Let // be the Cartan subgroup which is the stabiliser of &c under the

adjoint action of G. An //-series representation of G is, by definition, one induced

from a representation tj ® ey of P. As such, it is realised on a space of functions/:

G ^ H^ satisfying

(vi) ri'®ey(p)f(gp)=f(g)    VgGG,/?G/>.
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An //-series representation gives rise to a unitary representation if and only if y = p

+ itp with <p g a* and p a particular linear map in a*. In this case, one can take for

the representation space the functions satisfying 6.4 and

(vu) f  \\f(k)\\2 dp <ao.
JK

We denote this //-series representation by o^, and its representation space by^,   -.

Given an irreducible representation tj of K. we choose a discrete series representa-

tion tj' of Mx whose restriction to K^ contains rj, or more correctly, has tj as a

quotient. This can always be done. One can, for example, note that discrete series

representations are spinor induced from the irreducible representations of a maximal

compact subgroup [1] and apply a form of Frobenius reciprocity. Alternatively one

can choose the discrete series representation of Mx whose highest weight is the same

as that of tj, and apply the formula of Blattner-Hecht-Schmidt to prove containment

[8]. These give a natural choice of tj'. In general there will be many choices, as

exemplified in the simplest case with G = 5L(2, R), K = 50(2). Let Q denote a

projection of -n',K onto tj.

As in §4, define s¿k expc v) = e-^'\ Then s^f g JT(11+WtV for any / g jf^.

Let

(viii) (*/)(*)«(?(/(*)).

The map ^ generalises the mere restriction of functions to K in the generic case. We

have

(ix) *(/) e//(„+1)lM   and   *(*♦/)-*(/).

One can now follow the proof of Theorem 1 to obtain the following generalisation to

the nongeneric case.

Theorem 1'. With the notation above, define

(x) °„+.Avk): f "* °W.y[wi/«( <*)](■**/)

Vvk G V X K andf G 3^^. Then

(xi) Iim*[ff-+(o*)/] -*,,,(*/)•
n —* oo

Moreover, ^(¿V,,^^) = H^   V« G N and the limit above is in the sense of L2(K, Hv).

Suppose now that (G, A") is a Riemannian symmetric pair of the compact type. In

this case we note that K^AX is a closed subgroup of maximal rank, and we should

like to use it as a replacement for MA in the generic case. In contrast to this case,

K^AX is in general disconnected, and this causes difficulties in carrying through the

arguments of §5. Using the root system P+ defined by (iii) above, one can define

holomorphic induction from irreducible representations of K^AX. Since Ax cen-

tralises A"^, such an irreducible representation has the form tj ® e'*, where tj is an

irreducible representation of K^ and e"* is a character of Ax. If o^iT) denotes the

representation of G holomorphically induced from tj ® e"f>, one can show by the

Cartan Theorem that there is a basis <px,...,<J>m of a* for which o\ l51 = 1,...,m, are
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irreducible A"-class 1 representations of G. One now arrives at the problem that, for

an arbitrary tj, it is not clear that one can find a character e,<i>0 of Ax for which a^ n is

nonzero. One cannot guarantee, therefore, that the sequence of representations o^ ,,,

which would be defined by analogy with Theorem 2, is nontrivial.

This difficulty is circumvented in the generic case because MA = MeA, and an

irreducible representation of MA is uniquely determined by one of Me and a

character of A. The arguments leading to Theorem 2 can be followed almost

verbatim in the nongeneric case, where, likewise, an irreducible representation of

K^AX is determined by one of K^e and a character of Ax. In this case one can relate

representations holomorphically induced from K^AX to those holomorphically in-

duced from the connected subgroup K^eAx.

We can show that K^ = K^e ■ (K P A), and that, for a suitable subgroup F c K

P A, A/, = K^e X F. By Mackey's semidirect product analysis an irreducible repre-

sentation tj of K^ is determined by an irreducible representation tj of Kt¡/e and a

character of the subgroup F whose elements a stabilise tj in the sense that k >->

r\(aka~l) is equivalent to rj. If this subgroup of F lies in Ax, then we may extend the

character of the subgroup to all of Ax to obtain a character e'^° say, and show from

this that the sequence o^ is nontrivial. It is only in this case that we can prove the

nongeneric analogue of Theorem 2.

References

1. M. F. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups.

Invent. Math. 42 (1977), 1-62.

2. L. Auslander and B. Kostant, Polarisation and unitary representations of solvable Lie groups. Invent.

Math. 14(1971), 255-354.

3. E. Cartan, Sur la détermination d'un système orthogonal complet dans un espace de Riemann

symmetrique clos.. Rend. Cire. Math. Palermo 53 (1929), 217-252.

4. J.-L. Clerc, Une formule asymptotique du type Mehler-Heine pour ¡es zonales d'un espace riemannien

symétrique, Studia Math. 57 (1976), 27-32.

5. A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc.

Cambridge Philos. Soc. 94 (1983), 509-517.

6. R. Gilmore, Lie groups. Lie algebras, and some of their applications, Wiley, New York, 1974.

7. V. Guillemin and S. Sternberg, Geometric asymptotics. Math. Surveys, no. 14, Amer. Math. Soc,

Providence, R. I., 1977.

8. H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math. 31 (1975), 129-154.

9. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.

10. _, Differential geometry. Lie groups, and symmetric spaces. Academic Press, New York, 1978.

11. _, A duality for symmetric spaces with applications to group representations. III. Tangent space

analysis. Adv. in Math. 36 (1980), 297-323.

12. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York,

1980.

13. E. Inönu and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad.

Sei. U.S.A. 39 (1953), 510-524.

14. A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions, Ann. Sei. Ecole Norm.

Sup. (4) 5 (1972), 459-516.

15. M. Lasalle, Série de Laurent des fonctions holomorphes dans la complexification d'un espace

symmetrique compacte, Ann. Sei. Ecole Norm. Sup. (4) 11 (1978), 167-210.

16. M. Lévy-Nahas, Deformation and contraction of Lie algebras, J. Math. Phys. 8 (1967), 1211-1222.

17. R. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math.

Pures. Appl. 59 (1980), 337-374.



202 A. H. DOOLEY AND J. W. RICE

18. G. W. Mackey, On the analogy between semisimple Lie groups and certain related semi-direct product

groups, in Lie Groups and Their Representations (ed., I. M. Gelfand), Hilger, London, 1975.

19._, Induced representations of groups and quantum mechanics, Benjamin, New York, 1968.

20. N. Mukunda, Expansion of Lie groups and representations of SLQ, C), J. Math. Phys. 10 (1969),

897-911.

21. A. Nijenhuis and R. W. Richardson, Deformations of homorphisms of Lie groups and Lie algebras,

Bull. Amer. Math. Soc. 73 (1967), 175-179.

22. E. J. Saletan, Contraction of Lie groups, J. Math. Phys. 2 (1961), 1-21.

23. G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972.

24. N. Wallach, Harmonic analysis on homogeneous spaces. Marcel Dekker, New York, 1973.

25. J. A. Wolf, Orbit method and non-degenerate series, Hiroshima Math J. 4 (1974), 619-628.

School of Mathematics, University of New South Wales, Kensington, N. S. W. 2033,

Australia

School of Mathematical Sciences, Flinders University, Bedford Park, S. A. 5042, Australia


