Complete linear systems on rational surfaces
HTML articles powered by AMS MathViewer
- by Brian Harbourne
- Trans. Amer. Math. Soc. 289 (1985), 213-226
- DOI: https://doi.org/10.1090/S0002-9947-1985-0779061-2
- PDF | Request permission
Abstract:
We determine the dimension, fixed components and base points of complete linear systems on blowings-up of ${{\mathbf {P}}^2}$ having irreducible anticanonical divisor.References
- M. Demazure, Surfaces de Del Pezzo, Lecture Notes in Math., Vol. 777, Springer-Verlag, Berlin and New York, 1980, pp. 23-69.
P. DuVal, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1937), 18-51.
B. Harbourne, Moduli of rational surfaces, Ph.D. Thesis, M.I.T., 1982.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Eduard Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. (2) 114 (1981), no. 2, 267–322. MR 632841, DOI 10.2307/1971295
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- Masayoshi Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 271–293. MR 126444, DOI 10.1215/kjm/1250775912
- Masayoshi Nagata, On the $14$-th problem of Hilbert, Amer. J. Math. 81 (1959), 766–772. MR 105409, DOI 10.2307/2372927
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 289 (1985), 213-226
- MSC: Primary 14J26; Secondary 14C20
- DOI: https://doi.org/10.1090/S0002-9947-1985-0779061-2
- MathSciNet review: 779061