Fixed points and conjugacy classes of regular elliptic elements in $\textrm {Sp}(3,\textbf {Z})$
HTML articles powered by AMS MathViewer
- by Min King Eie and Chung Yuan Lin
- Trans. Amer. Math. Soc. 289 (1985), 485-496
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784000-4
- PDF | Request permission
Abstract:
In this paper, we obtain $13$ isolated fixed points (up to a $\operatorname {Sp}(3,{\mathbf {Z}})$-equivalence) and $86$ conjugacy classes of regular elliptic elements in $\operatorname {Sp}(3,{\mathbf {Z}})$. Hence the contributions from regular elliptic conjugacy classes in $\operatorname {Sp}(3,{\mathbf {Z}})$ to the dimension formula computed via the Selberg trace formula can be computed explictly by the main theorem of [${\mathbf {4}}$ or ${\mathbf {5}}$].References
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- Ulrich Christian, A reduction theory for symplectic matrices, Math. Z. 101 (1967), 213โ244. MR 217096, DOI 10.1007/BF01135840
- Ulrich Christian, Zur Theorie der symplektischen Gruppen, Acta Arith. 24 (1973), 61โ85 (German). MR 330056, DOI 10.4064/aa-24-1-61-85
- Min King Eie, Contributions from conjugacy classes of regular elliptic elements in $\textrm {Sp}(n,\,\textbf {Z})$ to the dimension formula, Trans. Amer. Math. Soc. 285 (1984), no.ย 1, 403โ410. MR 748846, DOI 10.1090/S0002-9947-1984-0748846-X โ, Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc. (to appear).
- Erhard Gottschling, รber die Fixpunkte der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 111โ149 (German). MR 123026, DOI 10.1007/BF01342975
- Erhard Gottschling, รber die Fixpunktuntergruppen der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 399โ430 (German). MR 124407, DOI 10.1007/BF01470754
- Hisaichi Midorikawa, On the number of regular elliptic conjugacy classes in the Siegel modular group of degree $2n$, Tokyo J. Math. 6 (1983), no.ย 1, 25โ38. MR 707837, DOI 10.3836/tjm/1270214324
- B. Steinle, Fixpunktmannigfaltigkeiten symplektischer Matrizen, Acta Arith. 20 (1972), 63โ106 (German). MR 294254, DOI 10.4064/aa-20-1-63-106
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 289 (1985), 485-496
- MSC: Primary 11F46
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784000-4
- MathSciNet review: 784000