The Cauchy integral, Calderón commutators, and conjugations of singular integrals in $\textbf {R}^ n$
Author:
Margaret A. M. Murray
Journal:
Trans. Amer. Math. Soc. 289 (1985), 497-518
MSC:
Primary 42B20; Secondary 47B38, 47G05
DOI:
https://doi.org/10.1090/S0002-9947-1985-0784001-6
MathSciNet review:
784001
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the Cauchy integral and Hilbert transform for Lipschitz domains in the Clifford algebra based on ${R^n}$. The Hilbert transform is shown to be the generating function for the Calderón commutators in ${R^n}$. We make use of an intrinsic characterization of these commutators to obtain ${L^2}$ estimates. These estimates are used to show the analyticity of the Hilbert transform and of the conjugation of singular integral operators by bi-Lipschitz changes of variable in ${R^n}$.
- F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697564
- A.-P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324–1327. MR 466568, DOI https://doi.org/10.1073/pnas.74.4.1324
- A.-P. Calderón, Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 85–96. MR 562599
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI https://doi.org/10.2307/2007065
- R. R. Coifman, Y. Meyer, and E. M. Stein, Un nouvel éspace fonctionnel adapté à l’étude des opérateurs définis par des intégrales singulières, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 1–15 (French). MR 729344, DOI https://doi.org/10.1007/BFb0069149 ---, Some new functions spaces and their applications to harmonic analysis, J. Funct. Anal. (to appear).
- Gerald B. Folland, Introduction to partial differential equations, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics; Mathematical Notes. MR 0599578
- Robert P. Gilbert and James L. Buchanan, First order elliptic systems, Mathematics in Science and Engineering, vol. 163, Academic Press, Inc., Orlando, FL, 1983. A function theoretic approach. MR 715259
- C. B. Morrey Jr. and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math. 10 (1957), 271–290. MR 89334, DOI https://doi.org/10.1002/cpa.3160100204
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972 G. C. Verchota, Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, Ph. D. Thesis, University of Minnesota, 1982.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B20, 47B38, 47G05
Retrieve articles in all journals with MSC: 42B20, 47B38, 47G05
Additional Information
Keywords:
Commutators with singular integrals in <IMG WIDTH="32" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img2.gif" ALT="${R^n}$">,
Cauchy integrals in <IMG WIDTH="32" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${R^n}$">,
conjugation of singular integrals by changes of variable
Article copyright:
© Copyright 1985
American Mathematical Society