Convexity conditions and intersections with smooth functions
HTML articles powered by AMS MathViewer
- by S. Agronsky, A. M. Bruckner, M. Laczkovich and D. Preiss
- Trans. Amer. Math. Soc. 289 (1985), 659-677
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784008-9
- PDF | Request permission
Abstract:
A continuous function that agrees with each member of a family $\mathcal {F}$ of smooth functions in a small set must itself possess certain desirable properties. We study situations that arise when $\mathcal {F}$ consists of the family of polynomials of degree at most $n$, as well as certain larger families and when the small sets of agreement are finite. The conclusions of our theorems involve convexity conditions. For example, if a continuous function $f$ agrees with each polynomial of degree at most $n$ in only a finite set, then $f$ is $(n + 1)$-convex or $(n + 1)$-concave on some interval. We consider also certain variants of this theorem, provide examples to show that certain improvements are not possible and present some applications of our results.References
- Henri Cartan, Œuvres. Vol. I, II, III, Springer-Verlag, Berlin-New York, 1979 (French). Edited by Reinhold Remmert and Jean-Pierre Serre. MR 540747 E. Čech, Sur les fonctions continues qui prennent chaque leur valeur un nombre fini de fois, Fund. Math. 17 (1931), 32-39.
- F. M. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966), 75–87 (French). MR 188381, DOI 10.4064/fm-58-1-75-87
- K. M. Garg, On level sets of a continuous nowhere monotone function, Fund. Math. 52 (1963), 59–68. MR 143855, DOI 10.4064/fm-52-1-59-68
- M. Laczkovich, Differentiable restrictions of continuous functions, Acta Math. Hungar. 44 (1984), no. 3-4, 355–360. MR 764629, DOI 10.1007/BF01950290
- K. Padmavally, On the roots of equation $f(x)=\xi$ where $f(x)$ is real and continuous in $(a,b)$ but monotonic in no subinterval of $(a,b)$, Proc. Amer. Math. Soc. 4 (1953), 839–841. MR 59341, DOI 10.1090/S0002-9939-1953-0059341-3
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. MR 0120127 N. H. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- Zygmunt Zahorski, Sur l’ensemble des points singuliers d’une fonction d’une variable réelle admettant les dérivées de tous les ordres, Fund. Math. 34 (1947), 183–245 (French). MR 25545, DOI 10.4064/fm-34-1-183-245
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 289 (1985), 659-677
- MSC: Primary 26A51; Secondary 26A48
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784008-9
- MathSciNet review: 784008