Obstruction theory and multiparameter Hopf bifurcation
HTML articles powered by AMS MathViewer
- by Jorge Ize
- Trans. Amer. Math. Soc. 289 (1985), 757-792
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784013-2
- PDF | Request permission
Abstract:
The Hopf bifurcation problem is treated as an example of an equivariant bifurcation. The existence of a local bifurcating solution is given by the nonvanishing of an obstruction to extending a map defined on a complex projective space and is computed using the complex Bott periodicity theorem. In the case of the classical Hopf bifurcation the results of Chow, Mallet-Paret and Yorke are recovered without using any special index as the Fuller degree: There is bifurcation if the number of exchanges of stability is nonzero. A global theorem asserts that the sum of the local invariants on a bounded component of solutions must be zero.References
- J. C. Alexander, Bifurcation of zeroes of parametrized functions, J. Functional Analysis 29 (1978), no. 1, 37–53. MR 499933, DOI 10.1016/0022-1236(78)90045-9
- J. C. Alexander and James A. Yorke, Global bifurcations of periodic orbits, Amer. J. Math. 100 (1978), no. 2, 263–292. MR 474406, DOI 10.2307/2373851
- M. F. Atiyah, Algebraic topology and elliptic operators, Comm. Pure Appl. Math. 20 (1967), 237–249. MR 211418, DOI 10.1002/cpa.3160200202
- Armand Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397–432. MR 72426, DOI 10.1090/S0002-9904-1955-09936-1
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Shui Nee Chow, John Mallet-Paret, and James A. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. 2 (1978), no. 6, 753–763. MR 512165, DOI 10.1016/0362-546X(78)90017-2
- Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174. MR 478189, DOI 10.1007/BF01390270 B. Fiedler, Stabilitätswchsel und globale Hopf-Verzweingung, Dissertation, Heidelberg, August 1982.
- F. Brock Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133–148. MR 209600, DOI 10.2307/2373103
- A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces. I, Rozprawy Mat. 30 (1962), 93. MR 149253
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454 S. Y. Husseini, The equivariant $J$-homomorphism for arbitrary ${S^1}$-action, University of Wisconsin, Preprint, 1982.
- Jorge Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 7 (1976), no. 174, viii+128. MR 425696, DOI 10.1090/memo/0174
- Jorge Ize, Periodic solutions of nonlinear parabolic equations, Comm. Partial Differential Equations 4 (1979), no. 12, 1299–1387. MR 551656, DOI 10.1080/03605307908820129 —, Le problème de bifurcation de Hopf, Sem. Brezis-Lions, 1975 (A paraitre).
- Jorge Ize, Introduction to bifurcation theory, Differential equations (S ao Paulo, 1981) Lecture Notes in Math., vol. 957, Springer, Berlin-New York, 1982, pp. 145–202. MR 679145
- J. Ize, I. Massabò, J. Pejsachowicz, and A. Vignoli, Structure and dimension of global branches of solutions to multiparameter nonlinear equations, Trans. Amer. Math. Soc. 291 (1985), no. 2, 383–435. MR 800246, DOI 10.1090/S0002-9947-1985-0800246-0
- Czes Kosniowski, Equivariant cohomology and stable cohomotopy, Math. Ann. 210 (1974), 83–104. MR 413081, DOI 10.1007/BF01360033 K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.
- John Mallet-Paret and James A. Yorke, Snakes: oriented families of periodic orbits, their sources, sinks, and continuation, J. Differential Equations 43 (1982), no. 3, 419–450. MR 649847, DOI 10.1016/0022-0396(82)90085-7
- Wacław Marzantowicz, On the nonlinear elliptic equations with symmetry, J. Math. Anal. Appl. 81 (1981), no. 1, 156–181. MR 618766, DOI 10.1016/0022-247X(81)90055-X
- Takashi Matsuoka, Equivariant function spaces and bifurcation points, J. Math. Soc. Japan 35 (1983), no. 1, 43–52. MR 679073, DOI 10.2969/jmsj/03510043
- L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973–1974. MR 0488102
- L. Nirenberg, Comments on nonlinear problems, Matematiche (Catania) 36 (1981), no. 1, 109–119 (1983). With an appendix by Chang Shou Lin. MR 736798
- Richard S. Palais, The classification of $G$-spaces, Mem. Amer. Math. Soc. 36 (1960), iv+72. MR 0177401
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 N. Steenrod, Topology of fiber bundles, Princeton Univ. Press, Princeton, N.J., 1965.
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 289 (1985), 757-792
- MSC: Primary 58E07; Secondary 55S35, 58F22
- DOI: https://doi.org/10.1090/S0002-9947-1985-0784013-2
- MathSciNet review: 784013