Subspaces of $\textrm {BMO}(\textbf {R}^ n)$
HTML articles powered by AMS MathViewer
- by Michael Frazier
- Trans. Amer. Math. Soc. 290 (1985), 101-125
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787957-0
- PDF | Request permission
Abstract:
We consider subspaces of ${\text {BMO}}({{\mathbf {R}}^n})$ generated by one singular integral transform. We show that the averages along ${x_j}$-lines of the $j$ th Riesz transform of $g \in {\text {BMO}} \cap {L^2}({{\mathbf {R}}^n})$ or $g \in {L^\infty }({{\mathbf {R}}^n})$ satisfy a certain strong regularity property. One consquence of this result is that such functions satisfy a uniform doubling condition on a.e. ${x_j}$-line. We give an example to show, however, that the restrictions to ${x_j}$-lines of the Riesz transform of $g \in {\text {BMO}} \cap {L^2}({{\mathbf {R}}^n})$ do not necessarily have uniformly bounded ${\text {BMO}}$ norm. Also, for a Calderรณn-Zygmund singular integral operator $K$ with real and odd kernel, we show that $K({\text {BMO}_c}) \subseteq \overline {{L^\infty } + K(L_c^\infty )}$, where $L_c^\infty$ and ${\text {BMO}_c}$ are the spaces of ${L^\infty }$ or ${\text {BMO}}$ functions of compact support, respectively, and the closure is taken in ${\text {BMO}}$ norm.References
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no.ย 3-4, 137โ193. MR 447953, DOI 10.1007/BF02392215 M. W. Frazier, Functions of bounded mean oscillation characterized by a restricted set of martingale or Riesz transforms, Ph.D. Thesis, University of California, Los Angeles, 1983.
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- John B. Garnett and Peter W. Jones, The distance in BMO to $L^{\infty }$, Ann. of Math. (2) 108 (1978), no.ย 2, 373โ393. MR 506992, DOI 10.2307/1971171 S. Janson, Characterization of $H^1$ by singular integral transforms on martingales and ${{\mathbf {R}}^n}$, Math. Scand. 41 (1977), 140-152.
- J.-P. Kahane, Trois notes sur les ensembles parfaits linรฉaires, Enseign. Math. (2) 15 (1969), 185โ192 (French). MR 245734 E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of ${\text {BMO}}({{\mathbf {R}}^n})$, Acta Math. 148 (1982), 215-241. โ, A constructive proof of the Fefferman-Stein decomposition of ${\text {BMO}}$ on simple martingales, Conf. on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II (Beckner, et al., eds.), University of Chicago Press, Chicago, Ill., 1981, pp. 495-505.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 101-125
- MSC: Primary 42B20; Secondary 42B30, 46E99, 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787957-0
- MathSciNet review: 787957