On twisted lifting

Author:
Yuval Z. Flicker

Journal:
Trans. Amer. Math. Soc. **290** (1985), 161-178

MSC:
Primary 11F70; Secondary 11R39, 11S37, 22E55

DOI:
https://doi.org/10.1090/S0002-9947-1985-0787960-0

MathSciNet review:
787960

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is a generator of the galois group of a finite cyclic extension of local or global fields, and is a character of whose restriction to has order , then the irreducible admissible or automorphic representations of over with are determined.

**[**James G. Arthur,**A**]*A trace formula for reductive groups. I. Terms associated to classes in 𝐺(𝑄)*, Duke Math. J.**45**(1978), no. 4, 911–952. MR**518111****[ ]**James Arthur,*On a family of distributions obtained from Eisenstein series. II. Explicit formulas*, Amer. J. Math.**104**(1982), no. 6, 1289–1336. MR**681738**, https://doi.org/10.2307/2374062**[**I. N. Bernstein and A. V. Zelevinsky,**BZ**]*Induced representations of reductive 𝔭-adic groups. I*, Ann. Sci. École Norm. Sup. (4)**10**(1977), no. 4, 441–472. MR**579172****[**A. Borel,**B**]*Automorphic 𝐿-functions*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR**546608****[**P. Cartier,**C**]*Representations of 𝑝-adic groups: a survey*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–155. MR**546593****[**Yuval Z. Flicker,**F**]*Stable and labile base change for 𝑈(2)*, Duke Math. J.**49**(1982), no. 3, 691–729. MR**672503****[**Harish-Chandra,**H**]*Harmonic analysis on reductive 𝑝-adic groups*, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. MR**0414797****[**H. Jacquet and J. A. Shalika,**JS**]*On Euler products and the classification of automorphic representations. I*, Amer. J. Math.**103**(1981), no. 3, 499–558. MR**618323**, https://doi.org/10.2307/2374103**[**David Kazhdan,**K**]*On lifting*, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249. MR**748509**, https://doi.org/10.1007/BFb0073149**[**R. Kottwitz,**Ko**]*Base change transfer of unit element in Hecke algebra*, Lecture at IAS, 1984.**[**J. Tate,**T**]*Number theoretic background*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR**546607****[**J. Tits,**Ti**]*Reductive groups over local fields*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR**546588**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11F70,
11R39,
11S37,
22E55

Retrieve articles in all journals with MSC: 11F70, 11R39, 11S37, 22E55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0787960-0

Article copyright:
© Copyright 1985
American Mathematical Society