On the relative consistency strength of determinacy hypotheses
HTML articles powered by AMS MathViewer
- by Alexander S. Kechris and Robert M. Solovay
- Trans. Amer. Math. Soc. 290 (1985), 179-211
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787961-2
- PDF | Request permission
Abstract:
For any collection of sets of reals $C$, let $C{\text {-DET}}$ be the statement that all sets of reals in $C$ are determined. In this paper we study questions of the form: For given $C \subseteq C\prime$, when is $C\prime {\text {-DET}}$ equivalent, equiconsistent or strictly stronger in consistency strength than $C {\text {-DET}}$ (modulo ${\text {ZFC}}$)? We focus especially on classes $C$ contained in the projective sets.References
- Richard Gostanian, Constructible models of subsystems of ZF, J. Symbolic Logic 45 (1980), no.Β 2, 237β250. MR 569395, DOI 10.2307/2273185
- Leo Harrington, Analytic determinacy and $0^{\sharp }$, J. Symbolic Logic 43 (1978), no.Β 4, 685β693. MR 518675, DOI 10.2307/2273508
- Felix Hausdorff, Set theory, 2nd ed., Chelsea Publishing Co., New York, 1962. Translated from the German by John R. Aumann et al. MR 0141601
- R. BjΓΆrn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229β308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp.Β 99β275. MR 520190
- Alexander S. Kechris, The axiom of determinacy implies dependent choices in $L(\textbf {R})$, J. Symbolic Logic 49 (1984), no.Β 1, 161β173. MR 736611, DOI 10.2307/2274099
- Alexander S. Kechris and Yiannis N. Moschovakis (eds.), Cabal Seminar 76β77, Lecture Notes in Mathematics, vol. 689, Springer, Berlin, 1978. MR 526912
- Alexander S. Kechris and Yiannis N. Moschovakis (eds.), Cabal Seminar 76β77, Lecture Notes in Mathematics, vol. 689, Springer, Berlin, 1978. MR 526912
- Alexander S. Kechris and W. Hugh Woodin, Equivalence of partition properties and determinacy, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no.Β 6, i, 1783β1786. MR 699440, DOI 10.1073/pnas.80.6.1783
- Donald A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1969/70), 287β291. MR 258637, DOI 10.4064/fm-66-3-287-291 β, Borel and projective games (to appear). β, Infinite games, Proc. Internat. Congr. Math., Helsinki, 1978, pp. 269-273. β, ${\Delta ^1}_{2n}$ determinacy implies $\Sigma _{2n}^1$ determinacy, mimeographed notes, 1973. β, ${\Delta ^1}_{2n}$ determinacy $\nRightarrow {\Delta ^1}_{2n + 1}$ determinacy, mimeographed notes, May 1974.
- Donald A. Martin, Yiannis N. Moschovakis, and John R. Steel, The extent of definable scales, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no.Β 3, 435β440. MR 648528, DOI 10.1090/S0273-0979-1982-15009-1
- D. A. Martin and R. M. Solovay, A basis theorem for $\sum _3^1$ sets of reals, Ann. of Math. (2) 89 (1969), 138β159. MR 255391, DOI 10.2307/1970813
- Donald A. Martin and John R. Steel, The extent of scales in $L(\textbf {R})$, Cabal seminar 79β81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp.Β 86β96. MR 730590, DOI 10.1007/BFb0071697
- William J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39 (1974), 57β66. MR 344123, DOI 10.2307/2272343
- William Mitchell, Hypermeasurable cardinals, Logic Colloquium β78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp.Β 303β316. MR 567676
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Yiannis N. Moschovakis, Scales on coinductive sets, Cabal seminar 79β81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp.Β 77β85. MR 730589, DOI 10.1007/BFb0071696 J. Simms, Ph.D. Thesis, Rockefeller University, 1979.
- John R. Steel, Determinacy in the Mitchell models, Ann. Math. Logic 22 (1982), no.Β 2, 109β125. MR 667223, DOI 10.1016/0003-4843(82)90017-1 β, Scales on $\Sigma _1^1$ sets, Cabal Seminar 79-81 (A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds.), Lecture Notes in Math., vol. 1019, Springer-Verlag, Berlin and New York, 1983, pp. 72-77.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 179-211
- MSC: Primary 03E60; Secondary 03E15, 03E35
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787961-2
- MathSciNet review: 787961