Unitary structures on cohomology
HTML articles powered by AMS MathViewer
- by C. M. Patton and H. Rossi
- Trans. Amer. Math. Soc. 290 (1985), 235-258
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787963-6
- PDF | Request permission
Abstract:
Let ${{\mathbf {C}}^{p + q}}$ be endowed with a hermitian form $H$ of signature $(p,q)$. Let ${M_r}$ be the manifold of $r$-dimensional subspaces of ${{\mathbf {C}}^{p + q}}$ on which $H$ is positive-definite and let $E$ be the determinant bundle of the tautological bundle on ${M_r}$. We show (starting from the oscillator representation of ${\text {SU}}(p,q))$ that there is an invariant subspace of ${H^{r(p - r)}}({M_r},\mathcal {O}(E(p + k)))$ which defines a unitary representation of ${\text {SU}}(p,q)$. For $W \in {M_p},\operatorname {Gr}(r,W)$ is the subvariety of $r$-dimensional subspaces of $W$. Integration over $\operatorname {Gr}(r,W)$ associates to an $r(p - r)$-cohomology class $\alpha$, a function $P(\alpha )$ on ${M_p}$. We show that this map is injective and provides an intertwining operator with representations of ${\text {SU}}(p,q)$ on spaces of holomorphic functions on Siegel spaceReferences
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303 —, Group representations on Hilbert spaces of analytic functions, Analytic Methods in Mathematical Physics (R. P. Gilbert and R. G. Newton, Eds.), Gordon and Breach, New York, 1968.
- Robert J. Blattner, Quantization and representation theory, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 147–165. MR 0341529
- Robert J. Blattner and John H. Rawnsley, Quantization of the action of $\textrm {U}(k,\,l)$ on $\textbf {R}^{2(k+l)}$, J. Funct. Anal. 50 (1983), no. 2, 188–214. MR 693228, DOI 10.1016/0022-1236(83)90067-8
- Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248. MR 89473, DOI 10.2307/1969996
- J. Carmona, Représentations du groupe de Heisenberg dans les espaces de $(0,\,q)$-formes, Math. Ann. 205 (1973), 89–112 (French). MR 342643, DOI 10.1007/BF01350840
- Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497
- Phillip A. Griffiths, Some geometric and analytic properties of homogeneous complex manifolds. II. Deformation and bundle theory, Acta Math. 110 (1963), 157–208. MR 154300, DOI 10.1007/BF02391858
- Kenneth I. Gross and Ray A. Kunze, Generalized Bessel transforms and unitary representations, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 347–350. MR 0344381
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Hans Plesner Jakobsen and Michele Vergne, Wave and Dirac operators, and representations of the conformal group, J. Functional Analysis 24 (1977), no. 1, 52–106. MR 0439995, DOI 10.1016/0022-1236(77)90005-2
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237 L. A. Mantini, An analog of the Penrose correspondence for representations of $U(p,q)$ on ${L^2}$-cohomology, Thesis, Harvard, Univ., Cambridge, Mass., 1983.
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- C. M. Patton, Zero rest mass fields and the Bargmann complex structure, Complex manifold techniques in theoretical physics (Proc. Workshop, Lawrence, Kan., 1978) Res. Notes in Math., vol. 32, Pitman, Boston, Mass.-London, 1979, pp. 126–134. MR 564448
- C. M. Patton, On representations in cohomology over pseudo-Hermitian symmetric spaces, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 63–66. MR 614314, DOI 10.1090/S0273-0979-1981-14922-3
- Richard Penney, Lie cohomology of representations of nilpotent Lie groups and holomorphically induced representations, Trans. Amer. Math. Soc. 261 (1980), no. 1, 33–51. MR 576862, DOI 10.1090/S0002-9947-1980-0576862-6
- Roger Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), no. 1, 31–52. MR 439004, DOI 10.1007/bf00762011 J. H. Rawnsley, W. Schmid and J. A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. (1983).
- Jonathan Rosenberg, Realization of square-integrable representations of unimodular Lie groups on $L^{2}$-cohomology spaces, Trans. Amer. Math. Soc. 261 (1980), no. 1, 1–32. MR 576861, DOI 10.1090/S0002-9947-1980-0576861-4
- H. Rossi and M. Vergne, Group representations on Hilbert spaces defined in terms of $\partial _{b}$-cohomology on the Silov boundary of a Siegel domain, Pacific J. Math. 65 (1976), no. 1, 193–207. MR 422517
- Hugo Rossi, Holomorphic actions of $\textrm {Sp}(n,\,\textbf {R})$ with noncompact isotropy groups, Trans. Amer. Math. Soc. 263 (1981), no. 1, 207–230. MR 590420, DOI 10.1090/S0002-9947-1981-0590420-X
- Ichirô Satake, Factors of automorphy and Fock representations, Advances in Math. 7 (1971), 83–110. MR 348043, DOI 10.1016/0001-8708(71)90043-0 —, Unitary representations of semi-direct products of Lie groups on $\overline \partial$-cohomology spaces, Math. Ann. 190 (1971), 177-202.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 235-258
- MSC: Primary 22E45; Secondary 32F10, 32L10
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787963-6
- MathSciNet review: 787963