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ON THE BOUNDARY BEHAVIOUR

OF GENERALIZED POISSON INTEGRALS

ON SYMMETRIC SPACES

BY

Abstract. On a Riemannian symmetric space X of the noncompact type we

introduce a generalized Poisson transformation from functions on the minimal

boundary to functions on the maximal compactification whose restrictions to X are

eigenfunctions of the invariant differential operators. Some continuity- and

"Fatou"-theorems are proved.

Introduction. Let X = G/K be a Riemannian symmetric space of the noncompact

type. By a theorem of Kashiwara et al. [5] every joint eigenfunction <i> of the

invariant differential operators on X can be represented as a generalized Poisson

integral of a hyperfunction <p on the minimal boundary K/M, and, for "generic"

eigenvalues, <p is the " boundary value" of <t> in a certain abstract sense. When <p is a

continuous function, tp is the boundary value of <#> in a much more concrete way: <p is

the limit along geodesies of the ratio <t>/<t>x of <$> with the spherical function <f>x with

the same eigenvalues as <j>. This result holds under the condition on the eigenvalues

that Re A lies in the positive open Weyl chamber, and it is due to Helgason [1, p.

130]. It was generalized to L°°-functions <p on K/M with pointwise almost every-

where "admissible" convergence by Michelson [12, Theorem 2.2] and to L^functions

tp on K/M with pointwise almost everywhere "restricted admissible" convergence by

Sjögren [15, Theorem 2]. For <j> harmonic (which is the same as X = p) these

" Fatou-theorems" had been proved by Helgason, Korányi, Knapp, Williamson,

Lindahl and Stein [4,6,7,8,11,16].

In this note we generalize these results of Helgason, Michelson and Sjögren to

take into consideration the full boundary of X. In the maximal Satake-Furstenberg

compactification X of X, K/M is only part of the boundary of X (unless rank

G/K = 1)—it is the unique compact G-orbit. The other G-orbits in the boundary

can be identified with homogeneous spaces of the form G/B, where B is given by

B = (M n Af),4A for a parabolic subgroup P = MAN of G. For each such G-orbit

we define a generalized "partial" Poisson transformation from functions on K/M to

sections of line bundles over G/B. We will prove that if <p is continuous, the Poisson
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transform of tp on G/B is the limit of <p on X (after a normalization analogous to the

division with <j>x above). (This is done in §2.) Moreover, for <jd g Lp (1 < p < oo), we

prove convergence almost everywhere (in §3). In the harmonic case (X = p) these

results for the full boundary have been proved by Korányi [9,10] and Stein [16], and

our method of proof is in fact by developing generalizations of their proofs. For

simplicity we confine ourselves to the maximal compactification, leaving the further

generalization to the other Satake-Furstenberg compactifications (cf. Koränyi [9,

Lemma 1.2]) to the imagination of the reader.

Finally we mention that the theorem of Kashiwara et al. mentioned above, valid

for hyperfunctions tp, can also be generalized to this setting with the full boundary of

A'(see [14, Chapter 6]).

1. The generalized Poisson transformations. Let G be a connected real noncompact

semisimple Lie group with finite center, G = KAN an Iwasawa decomposition of G,

a the Lie algebra of A and k: G -» K, H: G -> a the corresponding projections. Let 6

denote the Cartan involution, let N = 8(N) and let M be the centralizer of a in K.

Let a* (respectively a*) be the real (complex) dual of a, 2 c a* the system of

restricted roots, 2+ the set of positive roots in 2, p half the sum of the roots in 2 +

with multiplicities and a* the Weyl chamber in a* consisting of those X g a* such

that (X, a) > 0 for all a g 2+, where ( , ) denotes the Killing form. We write

X g a* as X = Re X + v^-Tlm X, where Re X, Im X g a*. Let n = dim a, let A =

{a,,... ,a„} be the set of simple roots for 2+ and let (//,,...,//„) be the basis for a

dual to A. For a ^ A and v g a* let a" = exp(i>, H(a)).

For each subset F c A let a F be its annihilator in a, and let a F consist of those

H g aF for which a(H) > 0 for all a G A\F. Let AF= exp aF and let PF =

MFAFNF be the corresponding parabolic subgroup with the indicated Langlands

decomposition and NF C N. Let BF be the subgroup BF = (MF n K)AFNF of PF,

and let NF = 6(NF), N(F) = MFn N and N(F) = 6(N(F)).

Let / be an integrable function on K/M. For each F c A and A g a* we define

the ( generalized ) partial Poisson integral of / as the function <?xf on G given by

0,tf(g)=(       f(K(gk))e<x-p"^dk
JMFnK

(this is well defined for a.a. g g G). Let/X be the function

fÁg)=f(«(g))e(X->'"(*)}

on G. Then

P(f(g)=[      fx(gk)dk.

The transformation 0>x = @x  is the (generalized) Poisson transformation which

takes functions on K/M to eigenfunctions on G/K for the invariant differential

operators. When X = p, these Poisson integrals on G/K are harmonic functions.

It is easily seen that

0>Fxf(gman) = ax-p@Fx(g)

for all g g G, m g Mf n K,a g Af and n g Nf.
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Let 1 denote the constant function with value 1 on K/M and let </>x = @x\. Then

A1<j>x is the spherical function

<¡>x(g)=fe<x-p<"^dk

on G. We define the normalized partial Poisson integral of /by

^f(g) = ̂ f(g)Mig)

for g G (g' g G|^(g') * 0}. Then pf/(S*) = *>x/(s) for è G *j* Notice that if

A g a*, then <í>£(g) * 0 for ail g g G.

If we define an action of G on functions / on K/M by left translation of the

corresponding functions/x, it is obvious that ¿Px is a G-map. Clearly f x is a AT-map.

Let X be the maximal Satake-Furstenberg compactification of X. The space X can

be constructed as follows (cf. Oshima [13], or [14, Chapter 4]). Let R"+= [0, oo["

and for t G R",, let Ft = {etj ^ A\tj # 0} and a, = exp(-Ea.eF(log tj)Hj) (and a0 =

e). Define an equivalence relation ~ on G X R"+ by (g,t)~ (g', t') if and only if

Ft = Ft. and ga, g g'a,,BF. Then X = G X R"+/~ as a topological space. Let m:

G X R"+-> X be the projection. From the action of G on the first factor of G X R"+

the space X inherits a natural G-action, and the orbital decomposition is easily seen

to be given by

X =   (J G/BF
FcA

(disjoint union), each space G/BFbeing identified with the subset w({(g, t)\Ft = F})

of X. In particular, X = G/K is identified with w({(g, t)\t¡ > 0, V,}) and K/M =

G/P0 with7r(G X {0}).

Let Xx = {x g X|x = gfiF g G/fiF and ^>x(g) ̂  0}. If A is real valued on a, then

Xx = X. We define the (normalized) Poisson transform on X of /as the function px/

on A'x whose restriction to G/BF is px/ for all F c A. In particular, p~x/(.x) = f(x)

for x G A/M c X

2. Continuity theorems. Let FcA and A g a*. Then it is well known that the

integral

(2.1) cp= f_e(-x-»-Hr"»dñ
JNF

is absolutely convergent and nonzero if Re A G a*. In the following we use the

notation a -» oo for a g AF and a" -» oo for all a g A \ F. For any manifold S let

C(,S) denote the space of continuous functions on S.

Theorem 1. Let X g a * be such that Re A G a*, and let f G C(K/M). Then

ap~x0>xf(ga) - c[0>pf(g)

as a —* oo for all g g G. 77ie convergence is uniform in g on compact sets.
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Proof. By a well-known integration formula (see [17, Lemma 4.2.14b]) we have

Pf(g) = í (fx(gkñ)e<-x-p-"^dñdk
JMFnKJNF

for g G G, and hence for a g A F

ap-x0>f(ga)= f j' fx(gkaña-1)e<-x-p-Fírn)>dñdk.
JMFC\ K JNF

Since aña'1 —* e for a -> oo, an interchange of the order of going to the limit and
F

integrating proves the theorem. The interchange is justified by the dominated

convergence theorem by the argument of Helgason [1, p. 130], which in fact is

Theorem 1 for F = 0.    D

From Theorem 1 we get the following generalization. Let F c E c A. Then the

integral

(2.2) cp(E)=f e<-x-p-H^dñ
JNFrîN(E)

is absolutely convergent and nonzero if Re A G a*. This follows from (2.1) applied

to ME instead of G (in fact c£(E) = (c£)~lc[).

Corollary 1. Let X g a* be such that Re A G a* and let f g C(K/M). Then for

all g G G

ap-x^f(ga) -» c((E)!?£f(g)

when a g Af and a —> oo in the sense that aa —» oo for all a G E\F.

Proof. By the G-invariance of 3PX and 0>x we may assume g = e. Then we are

actually only considering the restriction of 5axf to MF, and the result follows from

Theorem 1 applied to ME instead of G.    □

We now consider the normalized Poisson transform px/on Xx. First we need a

result about Xx.

Lemma 1. Let A g a* and assume Re À g q*. Then Xx is open.

Proof. Fix F c A and let xelxn G/BF. Let g0 g G and t0 g R"+ be such that

x = Tr(g0, t0). Then t0j = 0 if ay £ F. By choosing g0 appropriately we obtain also

t0: = 1 if a- g F. Let ß be a compact neighborhood of g0 in G such that <i>x(g) + 0

for all g G ß. For each s > 0 let

Rs = {r g R"+1tJ = 1 if a, g F and t} < s otherwise}

and let Qs = 7r(ß X fij. Then ñ5 is a neighborhood of x in X.

Let F c A with Fc£, and RS(E) = {t g ßJF, = £}. Then ßs n G/BE =

7r(ß X Äf(£)). From Corollary 1 it follows that

(2.3) ap-X4>i(ga,)^cpx(E)4,{(g)

as t g RS(E) and j -» 0. The convergence is uniform in g g ß. Since cx(E) + 0 it

follows that <i>x(ga,) =£ 0 for all g G ß and t g fi5(F) for some sufficiently small

s > 0, that is, ßv n G/fi£ c Â\. Since ßä = Ufcfc^ß, n G/fiE) we have ßs c Xx

for sufficiently small s.   D



GENERALIZED POISSON INTEGRALS 277

Theorem 2. Let Ago* and assume Re A g a%. Then the Poisson transformation

px maps C(K/M) into C(XX). In particular, ifX G a*, then $X(C(K/M)) c C(X).

Proof. Fix F c A and let x e Xxn G/BF. Let g0 g G be such that x = Tr(g0, t0),

where f0 =1 if a g F and í0 = 0 otherwise. Let e > 0 and choose a compact

neighborhood ß of g0 in G such that 4>F(g) * 0 and |px/(g) - Px/(g0)l < e/2 for

all g g ß. This is possible because of the continuity of @xf and <i>x.

Let Rs, RS(E) and Sls for s > 0 and F d F be as in the proof of Lemma 1. From

Corollary 1 it follows that

ap-x^f(ga,) ^ cFx(E)^pf(g)

as t g RS(E) and s -* 0, and the convergence is uniform in g g ß. Combining this

with (2.3) gives that Pxf(ga,) -» p£(g), and the theorem follows.    D

For X = p this result is Proposition 4.2 in Korányi [9]. For G = SL(2, R) and

A = p it is a classical theorem due to H. A. Schwarz (see [2, Theorem 4.20]).

Remark. If « = 1 and A = 0 the conclusion of Theorem 2 also holds (cf.

Michelson [12, Theorem 1.3(i)]).

3. Fatou theorems. We will now, in an a.e. sense, extend to Lp-iunctions on K/M

(1 < p < oo ) the convergence result of Theorem 1. We consider the following types

of convergence. Let F c A, A G a* and g G G.

Admissible convergence. We say that ap~x0>xf(ga) converges to cx&>xf(g) admis-

sibly if for all compact sets U c NF and F c MF

ap-x&xf(gañm) -> cF<?Ff(gm)

as a -» oo, uniformly for ñ g U and w g F.
F _

Restricted admissible convergence. We say that ap ¿Pxf(ga) converges to

c[&xf(g) restrictedly admissibly if for all compact sets U c NF and V C MF, and

each // g aF,

hrX^xf(gh,ñm) - cF0>Ff(gm)

as ? -» oo, uniformly for ñ g [/ and m g F. Here /i, = exp r//.

Notice that if / is continuous it follows from Theorem 1 that ap~x0>xf(ga)

converges to cx0>xf(g) admissibly, because the set {añma~l\a g Af, ñ g U, m g

V } is compact.

Theorem 3. Let 1 < p < oo anJ/ g Lp(K/M). Assume that Re A G a*.

(i) T/iere ejcwte p0 < oo such that if p > p0, then ap~x@xf(ga) converges to

cxlPxf(g) admissibly for almost all g G G.

(ii) For any p we have that ap~xí?xf(ga) converges to cx£?xf(g) restrictedly

admissibly for almost all g g G.

Proof. The proof is a simple generalization of the maximal function estimates

given by Korányi and Stein for the case A = p.

Let L(NF) denote the space of measurable functions on NF, and let J( be an

operator (not necessarily linear) from LP(NF X MF n A) to L(NF). Let H g ot.
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We say that J( is an H-restricted maximal operator with respect to p and A if it has

the following properties:

(3.1) \ap-x@x$(ña)\*íJ?(Q>)(ñ)

for all ñ G ÑF, a = exp tH (t G R) and $ g L"(Ñf X MFD K), where

&Mg)=L  f       ®(ñx,k)e<-x-p-ms~l^k))dñxdk.
JNFJMFnK

If J( is an //-restricted maximal operator for each H g aF (i.e., (3.1) holds for all

a G A F) we call it a maximal operator.

Theorem 3 follows once we have proved the following two propositions:

Proposition 1. Lei A g a* such that Re A g a*.

(i) There exists p0 < oo and a maximal operator with respect to p0 and X which is of

weak type ( p0, p0).

(ii) For each H G a F there exists an H-restricted maximal operator with respect to

p = 1 and X which is of weak type (1,1).

Proposition 2. Let 1 < p < oo, /g Lp(K/M) and X as above. Suppose there

exists a maximal operator (respectively for each H G aF an H-restricted maximal

operator) with respect to p and X which is of weak type (p, p). Then ap~x¿Pxf(ga)

converges to cx^[(g) admissibly (resp. restrictedly admissibly) for a.a. g g G.

(See Korányi [10, p. 357] for the definition of weak (p, p).)

Proof of Proposition 1. (i) For A = p such an operator is constructed in

Korányi [10, Proof of Theorem 3.4]. It is easily seen that this operator in fact

satisfies (3.1) for all A g a* with Re A g a%.

(ii) Choose y > 0 such that X = yp + p with Re p g a*. Then since

Re(ju, //(«)> ^ 0 for all « g ÑF (cf. [3, Chapter 4, Corollary 6.6]) we get that

^(-X-p./Zla-'ñ-'ñ,^)),  <  e(-\-p,H(a-lñ-lñlka))

Hence we may assume A = yp with y > 0. Then it is easily seen (cf. [16, §8]) that the

kernel exp(-A — p, //(«)) on NF satisfies (a), (b) and (c) of [16, Theorem 1], and

the proposition follows.   D

Proof of Proposition 2 (cf. [10, Proposition 3.3]). We will prove that

ap~x3Pxf(gna) converges to cx¿Pxf(gñ) (restrictedly) admissibly for a.a. ñeívf for

each g g G. For this we may take g = e because of the invariance of @x.

Let L be a compact neighborhood of the identity in K, contained in the set

k(NfMf). By the invariance of 2PX we may assume supp/c L. For continuous

functions the convergence holds by Theorem 1. Since/can be approximated in Lp

with continuous functions we can thus reduce to the case where ||/|| is small. Then

it suffices to prove the following two estimates for each e > 0:

(3.2) mesf « g Ñf\ sup \&£f(ñm)\ > e) < C^WfW,,
\ m e V I
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(3.3)     mes(«GJvV| sup \ap-x&xf(ñañxm)\> e\ < C2e-p\\f\\pp,

where Cx and C2 are constants and B = AF(respectively B = exp RH).

Notice first that from the following two estimates it follows that we may assume

U = V= {e},f> 0 and A real:

K7(ñw)| <  f       \fx(nk)\dksup{\e<-x-p-H(m~lk)ï\\m<EV,k<EMFr\K},
JMFnK

\^xf(ñañxm)\ < f\fx(ñak)\dksup{\e<-x-p-mm'Wk)^\\ñx g U, m G V, k ë K}.

Now

\&xf(ñ)\ =  f       f(K(ñk))e<x-pH(*k)Uk
JMFnK

from which it follows that the left side of (3.2) is dominated by

e-l[   f       f(K(ñk))e(x-p-Hr"k»dkdñ
JNF JMFn K

« Q«"1 i  f       f(K(ñk))e<-2p-Hr"k)>dk dn = Cxe-l\\f\\x,
JNF JMFn K

where Cx = sup{e(x + p-H("k))\n g Ñf, k g MfD K, ic(ñk) g L}. Since ||/||, <

\\f\\p, (3.2) follows.

Let $(«, Â:) = fx(ñk) for « g NF, k g A/f Pi K. Then we have^x/(g) = ^xí»(g)

for g g G, and (3.3) follows from (3.1) and the weak (p, p) property of J(.   D

This completes the proof of Theorem 3.    □

From Theorem 3 we get the corresponding convergence result for px/by division

with the spherical function (for simplicity stated only for real A):

Corollary 2. Let 1 «s p «s oo andf g Lp(K/M). Assume that X G a*.

(i) There exists p0 < oo such that if p > p0, then Px/(ga) converges to p£(g)

admissibly for almost all g g G.

(ii) For any p we have that Pxf(ga) converges to px(g) restrictedly admissibly for

almost all g G G.

For F = 0 the admissible convergence a.e. was proved in Michelson [12] for

/ g L°° and the restricted admissible convergence a.e. for/ g L1 in Sjögren [15]. For

A = p and F arbitrary they were proved in Korányi [9,10] and Stein [16].

Remark. The condition on A that Re A g a * in Theorems 1 and 3, Proposition 2

and Corollary 2 can be weakened slightly to Re (A, a) > 0 for all a G 2+ with

nonzero restriction to a F. This follows easily from the proofs given.

Note added in proof. In a recent preprint, Admissible convergence of Poisson

integrals in symmetric spaces (Chalmers University of Technology, the University of

Göteborg, 1985), P. Sjögren obtains admissible convergence for / in Lp with any

p > 1 (that is, p0 = 1 in Theorem 3(i)).
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