On the boundary behaviour of generalized Poisson integrals on symmetric spaces
HTML articles powered by AMS MathViewer
- by Henrik Schlichtkrull
- Trans. Amer. Math. Soc. 290 (1985), 273-280
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787965-X
- PDF | Request permission
Abstract:
On a Riemannian symmetric space $X$ of the noncompact type we introduce a generalized Poisson transformation from functions on the minimal boundary to functions on the maximal compactification whose restrictions to $X$ are eigenfunctions of the invariant differential operators. Some continuity- and "Fatou"-theorems are proved.References
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X —, Topics in harmonic analysis on homogeneous spaces, Progress in Math., Vol. 13, Birkhäuser, Boston, Basel and Stuttgart, 1981.
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- S. Helgason and A. Korányi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc. 74 (1968), 258–263. MR 229179, DOI 10.1090/S0002-9904-1968-11912-3
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39. MR 485861, DOI 10.2307/1971253
- A. W. Knapp, Fatou’s theorem for symmetric spaces. I, Ann. of Math. (2) 88 (1968), 106–127. MR 225938, DOI 10.2307/1970557
- A. W. Knapp and R. E. Williamson, Poisson integrals and semisimple groups, J. Analyse Math. 24 (1971), 53–76. MR 308330, DOI 10.1007/BF02790369
- Adam Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393–409. MR 245826, DOI 10.1090/S0002-9947-1969-0245826-X
- Adam Korányi, Poisson integrals and boundary components of symmetric spaces, Invent. Math. 34 (1976), no. 1, 19–35. MR 425197, DOI 10.1007/BF01418969
- Adam Korányi, Compactifications of symmetric spaces and harmonic functions, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Math., vol. 739, Springer, Berlin, 1979, pp. 341–366. MR 560846
- Lars-Ȧke Lindahl, Fatou’s theorem for symmetric spaces, Ark. Mat. 10 (1972), 33–47. MR 383010, DOI 10.1007/BF02384800
- H. Lee Michelson, Fatou theorems for eigenfunctions of the invariant differential operators on symmetric spaces, Trans. Amer. Math. Soc. 177 (1973), 257–274. MR 319113, DOI 10.1090/S0002-9947-1973-0319113-6
- Toshio Ōshima, A realization of Riemannian symmetric spaces, J. Math. Soc. Japan 30 (1978), no. 1, 117–132. MR 477175, DOI 10.2969/jmsj/03010117
- Henrik Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, vol. 49, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 757178, DOI 10.1007/978-1-4612-5298-6
- Peter Sjögren, A Fatou theorem for eigenfunctions of the Laplace-Beltrami operator in a symmetric space, Duke Math. J. 51 (1984), no. 1, 47–56. MR 744287, DOI 10.1215/S0012-7094-84-05103-2
- E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), no. 1, 63–83. MR 722726, DOI 10.1007/BF01388531
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 273-280
- MSC: Primary 43A85; Secondary 22E30, 53C35
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787965-X
- MathSciNet review: 787965