On the decomposition numbers of the finite general linear groups
HTML articles powered by AMS MathViewer
- by Richard Dipper
- Trans. Amer. Math. Soc. 290 (1985), 315-344
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787968-5
- PDF | Request permission
Abstract:
Let $G = {\text {GL}_n}(q)$, $q$ a prime power, and let $r$ be an odd prime not dividing $q$. Let $s$ be a semisimple element of $G$ of order prime to $r$ and assume that $r$ divides. ${q^{\deg (\Lambda )}} - 1$ for all elementary divisors $\Lambda$ of $s$. Relating representations of certain Hecke algebras over symmetric groups with those of $G$, we derive a full classification of all modular irreducible modules in the $r$-block ${B_s}$ of $G$ with semisimple part $s$. The decomposition matrix $D$ of ${B_s}$ may be partly described in terms of the decomposition matrices of the symmetric groups corresponding to the Hecke algebras above. Moreover $D$ is lower unitriangular. This applies in particular to all $r$-blocks of $G$ if $r$ divides $q - 1$. Thus, in this case, the $r$-decomposition matrix of $G$ is lower unitriangular.References
- C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251–273. MR 304473, DOI 10.1090/S0002-9947-1972-0304473-1
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Everett C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), no. 3, 241–262. MR 593823, DOI 10.1007/BF01161413
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021 W. Feit, Representations of finite groups, Part I, Yale Univ., 1969.
- Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, DOI 10.1007/BF01389188
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, DOI 10.1090/S0002-9947-1955-0072878-2
- J. A. Green, Vorlesungen über Modulare Darstellungstheorie endlicher Gruppen, Vorlesungen aus dem Mathematischen Institut Giessen, Heft 2, Universität Giessen, Mathematisches Institut, Giessen, 1974 (German). An der Universität Giessen im Sommersemester 1974; With an English acknowledgment; Manuskript: Wolfgang Hamernik. MR 0360788
- R. B. Howlett and G. I. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), no. 1, 37–64. MR 570873, DOI 10.1007/BF01402273
- Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215–236 (1964). MR 165016
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Bhama Srinivasan, Representations of finite Chevalley groups, Lecture Notes in Mathematics, vol. 764, Springer-Verlag, Berlin-New York, 1979. A survey. MR 551499
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 315-344
- MSC: Primary 20G40; Secondary 20C20
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787968-5
- MathSciNet review: 787968