Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Existence of weak solutions to stochastic differential equations in the plane with continuous coefficients
HTML articles powered by AMS MathViewer

by J. Yeh PDF
Trans. Amer. Math. Soc. 290 (1985), 345-361 Request permission

Abstract:

Let $B$ be a $2$-parameter Brownian motion on ${\mathbf {R}}_ + ^2$. Consider the nonMarkovian stochastic differential system in $2$-parameter \[ \left \{ {\begin {array}{*{20}{c}} {dX(z) = \alpha (z,X)\;dB(z) + \beta (z,X)\;dz} \hfill & {{\text {for}}\;z \in {\mathbf {R}}_ + ^2,} \hfill \\ {x(z) = \xi } \hfill & {{\text {for}}\;z \in \partial {\mathbf {R}}_ + ^2,} \hfill \\ \end {array} } \right .\] i.e., \[ \left \{ {\begin {array}{*{20}{c}} {X(z) = X(0) + \int _{{R_z}} {\alpha (\zeta ,X)\;dB(\zeta ) + \int _{{R_z}} {\beta (\zeta ,X)\;d\zeta } } } \hfill & {{\text {for}}\;z \in {\mathbf {R}}_ + ^2,} \hfill \\ {x(0) = \xi ,} \hfill & {} \hfill \\ \end {array} } \right .\] where ${R_z} = [0,s] \times [0,t]$ for $z = (s,t) \in {\mathbf {R}}_ + ^2$. An existence theorem for weak solutions of the system is proved in this paper. Under the assumption that $\alpha$ and $\beta$ satisfy a continuity condition and a growth condition and ${\mathbf {E}}[{\xi ^6}] < \infty$, it is shown that there exist a $2$-parameter stochastic process $X$ and a $2$-parameter Brownian motion $B$ on some probability space satisfying the stochastic integral equation above, with $X(0)$ having the same probability distribution as $\xi$.
References
  • Renzo Cairoli, Sur une équation différentielle stochastique, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1739–A1742 (French). MR 301796
  • R. Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111–183. MR 420845, DOI 10.1007/BF02392100
  • K. L. Chung and R. J. Williams, Introduction to stochastic integration, 2nd ed., Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1102676, DOI 10.1007/978-1-4612-4480-6
  • C. Doléans-Dade and P. A. Meyer, Équations différentielles stochastiques, Séminaire de Probabilités, XI (Univ. Strasbourg, Strasbourg, 1975/1976) Lecture Notes in Math., Vol. 581, Springer, Berlin, 1977, pp. 376–382 (French). MR 0451403
  • Xavier Guyon and Bernard Prum, Variations-produit et formule de Itô pour les semi-martingales représentables à deux paramètres, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 3, 361–397 (French). MR 621118, DOI 10.1007/BF00536179
  • Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • J. Jacod and J. Memin, Weak and strong solutions of stochastic differential equations, Stochastic Integrals, Lecture Notes in Math., vol. 851, Springer-Verlag, Berlin and New York, 1980. R. S. Liptser and A. N. Shiryaev, Statistics of stochastic processes, Nauka, Moscow, 1974. (Russian)
  • Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
  • J. Reid, Dissertation, University of California, Irvine, Cal., 1981.
  • J. Reid, Estimate on moments of the solutions to stochastic differential equations in the plane, Ann. Probab. 11 (1983), no. 3, 656–668. MR 704552
  • A. V. Skorokhod, Investigations on the theory of stochastic processes, Kiev University, Kiev, 1961. (Russian)
  • Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
  • Constantin Tudor, A theorem concerning the existence of the weak solution of the stochastic equation with continuous coefficients in the plane, Rev. Roumaine Math. Pures Appl. 22 (1977), no. 9, 1303–1308. MR 518000
  • Constantin Tudor, On the existence and the uniqueness of solutions to stochastic integral equations with two-dimensional time parameter, Rev. Roumaine Math. Pures Appl. 24 (1979), no. 5, 817–827. MR 546400
  • S. Watanabe, Stochastic differential equations, Sangyo-Tosho, Tokyo, 1979. (Japanese)
  • Eugene Wong and Moshe Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 109–122. MR 370758, DOI 10.1007/BF00532559
  • J. Yeh, Existence of strong solutions for stochastic differential equations in the plane, Pacific J. Math. 97 (1981), no. 1, 217–247. MR 638191
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 60H10
  • Retrieve articles in all journals with MSC: 60H10
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 290 (1985), 345-361
  • MSC: Primary 60H10
  • DOI: https://doi.org/10.1090/S0002-9947-1985-0787969-7
  • MathSciNet review: 787969