Strongly pure subgroups of separable torsion-free abelian groups
HTML articles powered by AMS MathViewer
- by Loyiso G. Nongxa
- Trans. Amer. Math. Soc. 290 (1985), 363-373
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787970-3
- PDF | Request permission
Abstract:
In this paper we prove that countable strongly pure subgroups of completely decomposable groups are completely decomposable. We also show that strongly pure subgroups of separable torsion-free groups are separable.References
- H. Bowman and K. M. Rangaswamy, On special balanced subgroups of torsion-free separable abelian groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 32–40. MR 645914
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Paul Hill, Isotype subgroups of totally projective groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 305–321. MR 645937
- S. Janakiraman and K. M. Rangaswamy, Strongly pure subgroups of abelian groups, Group theory (Proc. Miniconf., Australian Nat. Univ., Canberra, 1975) Lecture Notes in Math., Vol. 573, Springer, Berlin, 1977, pp. 57–65. MR 0447436
- Alan H. Mekler, $\aleph _{1}$-separable groups of mixed type, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 114–126. MR 645923
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 363-373
- MSC: Primary 20K20
- DOI: https://doi.org/10.1090/S0002-9947-1985-0787970-3
- MathSciNet review: 787970