Free boundary regularity for surfaces minimizing $\textrm {Area}(S)+c \textrm {Area}(\partial S)$
HTML articles powered by AMS MathViewer
- by Edith A. Cook
- Trans. Amer. Math. Soc. 290 (1985), 503-526
- DOI: https://doi.org/10.1090/S0002-9947-1985-0792809-6
- PDF | Request permission
Abstract:
In ${{\mathbf {R}}^n}$, fix a hyperplane $Z$ and $a\;(k - 1)$-dimensional surface $F$ lying to one side of $Z$ with boundary in $Z$. We prove the existence of $S$ and $B$ minimizing $\operatorname {Area}(S) + c\operatorname {Area}(B)$ among all $k$-dimensional $S$ having boundary $F \cup B$, where $B$ is a free boundary constrained to lie in $Z$. We prove that except possibly on a set of Hausdorff dimension $k - 2$, $S$ is locally a ${C^{1,\alpha }}$ manifold with ${C^{1,\alpha }}$ boundary $B$ for $0 < \alpha < 1/2$. If $k = n - 1$, ${C^{1,\alpha }}$ is replaced by real analytic.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 162050, DOI 10.1002/cpa.3160170104
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- William K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975), 418–446. MR 397520, DOI 10.2307/1970934
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 420406, DOI 10.1090/memo/0165
- Herbert Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767–771. MR 260981, DOI 10.1090/S0002-9904-1970-12542-3
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Stefan Hildebrandt and Johannes C. C. Nitsche, Optimal boundary regularity for minimal surfaces with a free boundary, Manuscripta Math. 33 (1980/81), no. 3-4, 357–364. MR 612618, DOI 10.1007/BF01798233
- D. Kinderlehrer, L. Nirenberg, and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math. 34 (1978), 86–119 (1979). MR 531272, DOI 10.1007/BF02790009
- C. B. Morrey Jr., Second-order elliptic systems of differential equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N.J., 1954, pp. 101–159. MR 0068091 —, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.
- James Serrin, On the strong maximum principle for quasilinear second order differential inequalities, J. Functional Analysis 5 (1970), 184–193. MR 0259328, DOI 10.1016/0022-1236(70)90024-8
- Jean E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539. MR 428181, DOI 10.2307/1970949
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 503-526
- MSC: Primary 49F22
- DOI: https://doi.org/10.1090/S0002-9947-1985-0792809-6
- MathSciNet review: 792809