Directed sets and cofinal types
Author:
Stevo Todorčević
Journal:
Trans. Amer. Math. Soc. 290 (1985), 711-723
MSC:
Primary 03E05; Secondary 03E35, 06A10, 18B35, 54A15
DOI:
https://doi.org/10.1090/S0002-9947-1985-0792822-9
MathSciNet review:
792822
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that and
are the only cofinal types of directed sets of size
, but that there exist many cofinal types of directed sets of size continuum.
- [1] U. Abraham and S. Todorčević, Martin’s axiom and first-countable 𝑆- and 𝐿-spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 327–346. MR 776627
- [2] James E. Baumgartner, Applications of the proper forcing axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR 776640
- [3] Garrett Birkhoff, Moore-Smith convergence in general topology, Ann. of Math. (2) 38 (1937), no. 1, 39–56. MR 1503323, https://doi.org/10.2307/1968508
- [4] Mahlon M. Day, Oriented systems, Duke Math. J. 11 (1944), 201–229. MR 9970
- [5] K. J. Devlin, J. Steprāns and W. S. Watson, The number of inequivalent directed sets, Abstracts Amer. Math. Soc. 3 (1982), 253.
- [6] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, https://doi.org/10.2307/1969503
- [7] J. R. Isbell, The category of cofinal types. II, Trans. Amer. Math. Soc. 116 (1965), 394–416. MR 201316, https://doi.org/10.1090/S0002-9947-1965-0201316-8
- [8] John R. Isbell, Seven cofinal types, J. London Math. Soc. (2) 4 (1972), 651–654. MR 294185, https://doi.org/10.1112/jlms/s2-4.4.651
- [9] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR 0070144
- [10] Richard Laver, An order type decomposition theorem, Ann. of Math. (2) 98 (1973), 96–119. MR 319820, https://doi.org/10.2307/1970907
- [11] E. C. Milner and K. Prikry, The cofinality of a partially ordered set, Proc. London Math. Soc. (3) 46 (1983), no. 3, 454–470. MR 699097, https://doi.org/10.1112/plms/s3-46.3.454
- [12] E. H. Moore and H. L. Smith, A General Theory of Limits, Amer. J. Math. 44 (1922), no. 2, 102–121. MR 1506463, https://doi.org/10.2307/2370388
- [13] Jürgen Schmidt, Konfinalität, Z. Math. Logik Grundlagen Math. 1 (1955), 271–303 (German). MR 76836, https://doi.org/10.1002/malq.19550010405
- [14] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- [15] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245. MR 294139, https://doi.org/10.2307/1970860
- [16] J. Steprāns, Some results in set theory, Ph.D. thesis, University of Toronto, 1982.
- [17] Stevo Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), no. 2, 703–720. MR 716846, https://doi.org/10.1090/S0002-9947-1983-0716846-0
- [18] Stevo Todorčević, A note on the proper forcing axiom, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 209–218. MR 763902, https://doi.org/10.1090/conm/031/763902
- [19] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. MR 0002515
Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E05, 03E35, 06A10, 18B35, 54A15
Retrieve articles in all journals with MSC: 03E05, 03E35, 06A10, 18B35, 54A15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1985-0792822-9
Article copyright:
© Copyright 1985
American Mathematical Society