Variants of the maximal double Hilbert transform
HTML articles powered by AMS MathViewer
- by Elena Prestini
- Trans. Amer. Math. Soc. 290 (1985), 761-771
- DOI: https://doi.org/10.1090/S0002-9947-1985-0792826-6
- PDF | Request permission
Abstract:
We prove the boundedness on ${L_p}({T^2})$, $1 < p < \infty$, of two variants of the double Hilbert transform and maximal double Hilbert transform. They have an application to a problem of almost everywhere convergence of double Fourier series.References
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551–571. MR 340926, DOI 10.2307/1970917
- Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. MR 664621, DOI 10.1016/S0001-8708(82)80001-7
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019
- Elena Prestini, Uniform estimates for families of singular integrals and double Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), no. 1, 1–12. MR 846766
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Per Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat. 9 (1971), 65–90. MR 336222, DOI 10.1007/BF02383638
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101. MR 420115, DOI 10.4064/sm-57-1-97-101
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 290 (1985), 761-771
- MSC: Primary 42B25; Secondary 42B05, 44A15, 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0792826-6
- MathSciNet review: 792826