Subellipticity of the $\bar \partial$-Neumann problem on nonpseudoconvex domains
HTML articles powered by AMS MathViewer
- by Lop-Hing Ho
- Trans. Amer. Math. Soc. 291 (1985), 43-73
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797045-5
- PDF | Request permission
Abstract:
Following the work of Kohn, we give a sufficient condition for subellipticity of the $\overline \partial$-Neumann problem for not necessarily pseudoconvex domains. We define a sequence of ideals of germs and show that if $1$ is in any of them, then there is a subelliptic estimate. In particular, we prove subellipticity under some specific conditions for $n - 1$ forms and for the case when the Levi-form is diagonalizable. For the necessary conditions, we use another method to prove that there is no subelliptic estimate for $q$ forms if the Levi-form has $n - q - 1$ positive eigenvalues and $q$ negative eigenvalues. This was proved by Derridj. Using similar techniques, we prove a necessary condition for subellipticity for some special domains. Finally, we give a remark to Catlin’s theorem concerning the hypoellipticity of the $\overline \partial$-Neumann problem in the case of nonpseudoconvex domains.References
- David Catlin, Necessary conditions for subellipticity and hypoellipticity for the $\bar \partial$-Neumann problem on pseudoconvex domains, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 93–100. MR 627751
- David Catlin, Necessary conditions for subellipticity of the $\bar \partial$-Neumann problem, Ann. of Math. (2) 117 (1983), no. 1, 147–171. MR 683805, DOI 10.2307/2006974
- M. Derridj, Inégalités a priori et estimation sous-elliptique pour $\bar \partial$ dans des ouverts nonpseudoconvexes, Math. Ann. 249 (1980), no. 1, 27–48 (French). MR 575446, DOI 10.1007/BF01387078
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775 J. J. Kohn, Harmonic integrals on strongly pseudoconvex domains, I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid. 79 (1964), 450-472.
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058 S. Post, Finite type and subelliptic estimates for the $\overline \partial$-Neumann problem, Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1983.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 43-73
- MSC: Primary 32F20; Secondary 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797045-5
- MathSciNet review: 797045