The Cauchy problem for $u_ t=\Delta u^ m$ when $0<m<1$
HTML articles powered by AMS MathViewer
- by Miguel A. Herrero and Michel Pierre
- Trans. Amer. Math. Soc. 291 (1985), 145-158
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797051-0
- PDF | Request permission
Abstract:
This paper deals with the Cauchy problem for the nonlinear diffusion equation $\partial u/\partial t - \Delta (u|u{|^{m - 1}}) = 0$ on $(0,\infty ) \times {{\mathbf {R}}^N},u(0, \cdot ) = {u_0}$ when $0 < m < 1$ (fast diffusion case). We prove that there exists a global time solution for any locally integrable function ${u_0}$: hence, no growth condition at infinity for ${u_0}$ is required. Moreover the solution is shown to be unique in that class. Behavior at infinity of the solution and $L_{\operatorname {loc} }^\infty$-regularizing effects are also examined when $m \in (\max \{ (N - 2)/N,0\} ,1)$.References
- D. G. Aronson and Ph. Bënilan, Régularité des solutions de l’équation des milieux poreux dans ${{\mathbf {R}}^N}$, C. R. Acad. Sci. Paris Sér. A 288 (1979), 103-105.
- D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), no. 1, 351–366. MR 712265, DOI 10.1090/S0002-9947-1983-0712265-1
- P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 185–206 (French, with English summary). MR 743627, DOI 10.5802/aif.956
- Pierre Baras and Michel Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), no. 1-2, 111–149 (French, with English summary). MR 762868, DOI 10.1080/00036818408839514
- G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 67–78 (Russian). MR 0046217
- Philippe Bénilan and Michael G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to analysis and geometry (Baltimore, Md., 1980) Johns Hopkins Univ. Press, Baltimore, Md., 1981, pp. 23–39. MR 648452 H. Brezis, Semilinear equations in ${{\mathbf {R}}^N}$ without conditions at infinity (to appear).
- Philippe Bénilan, Michael G. Crandall, and Michel Pierre, Solutions of the porous medium equation in $\textbf {R}^{N}$ under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), no. 1, 51–87. MR 726106, DOI 10.1512/iumj.1984.33.33003
- Haïm Brézis and Michael G. Crandall, Uniqueness of solutions of the initial-value problem for $u_{t}-\Delta \varphi (u)=0$, J. Math. Pures Appl. (9) 58 (1979), no. 2, 153–163. MR 539218 B. J. Dahlberg and C. E. Kenig, Non-negative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (1984), 409-438.
- Emmanuele DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1983), no. 1, 83–118. MR 684758, DOI 10.1512/iumj.1983.32.32008
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Tosio Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135–148 (1973). MR 333833, DOI 10.1007/BF02760233
- O. A. Oleĭnik, A. S. Kalašinkov, and Yuĭ-Lin′Čžou, The Cauchy problem and boundary problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667–704 (Russian). MR 0099834
- L. A. Peletier, The porous media equation, Applications of nonlinear analysis in the physical sciences (Bielefeld, 1979), Surveys Reference Works Math., vol. 6, Pitman, Boston, Mass.-London, 1981, pp. 229–241. MR 659697 P. Sacks, Continuity of solutions of degenerate parabolic equations, Thesis, Univ. of Wisconsin, Madison, 1981.
- Juan Luis Vázquez, Behaviour of the velocity of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 286 (1984), no. 2, 787–802. MR 760987, DOI 10.1090/S0002-9947-1984-0760987-X
- Laurent Véron, Effets régularisants de semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci. Toulouse Math. (5) 1 (1979), no. 2, 171–200 (French, with English summary). MR 554377, DOI 10.5802/afst.535
- N. A. Watson, The rate of spatial decay of non-negative solutions of linear parabolic equations, Arch. Rational Mech. Anal. 68 (1978), no. 2, 121–124. MR 505509, DOI 10.1007/BF00281406
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 145-158
- MSC: Primary 35K55; Secondary 76X05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797051-0
- MathSciNet review: 797051