Symmetric positive systems with boundary characteristic of constant multiplicity
HTML articles powered by AMS MathViewer
- by Jeffrey Rauch
- Trans. Amer. Math. Soc. 291 (1985), 167-187
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797053-4
- PDF | Request permission
Abstract:
The theory of maximal positive boundary value problems for symmetric positive systems is developed assuming that the boundary is characteristic of constant multiplicity. No such hypothesis is needed on a neighborhood of the boundary. Both regularity theorems and mixed initial boundary value problems are discussed. Many classical ideas are sharpened in the process.References
- Rentaro Agemi, The initial-boundary value problem for inviscid barotropic fluid motion, Hokkaido Math. J. 10 (1981), no. 1, 156–182. MR 616950, DOI 10.14492/hokmj/1381758108
- Claude Bardos and Jeffrey Rauch, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc. 270 (1982), no. 2, 377–408. MR 645322, DOI 10.1090/S0002-9947-1982-0645322-8
- David G. Ebin, The initial-boundary value problem for subsonic fluid motion, Comm. Pure Appl. Math. 32 (1979), no. 1, 1–19. MR 508916, DOI 10.1002/cpa.3160320102
- K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132–151. MR 9701, DOI 10.1090/S0002-9947-1944-0009701-0
- K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345–392. MR 62932, DOI 10.1002/cpa.3160070206
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306 Choa-Hao Gu, Differentiable solutions of symmetric positive partial equations, Chinese J. Math 5 (1964), 541-545.
- Lars Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-New York, 1976. MR 0404822
- P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math. 13 (1960), 427–455. MR 118949, DOI 10.1002/cpa.3160130307 J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin and New York, 1972.
- Andrew Majda and Stanley Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), no. 5, 607–675. MR 410107, DOI 10.1002/cpa.3160280504
- Robert D. Moyer, On the nonidentity of weak and strong extensions of differential operators, Proc. Amer. Math. Soc. 19 (1968), 487–488. MR 222720, DOI 10.1090/S0002-9939-1968-0222720-6 T. Nishida and J. Rauch, Local existence for smooth inviscid compressible flows in bounded domains (to appear).
- Stanley Osher, An ill posed problem for a hyperbolic equation near a corner, Bull. Amer. Math. Soc. 79 (1973), 1043–1044. MR 350211, DOI 10.1090/S0002-9904-1973-13324-5
- Gideon Peyser, On the differentiability of solutions of symmetric hyperbolic systems, Proc. Amer. Math. Soc. 14 (1963), 963–969. MR 156102, DOI 10.1090/S0002-9939-1963-0156102-8
- Leonard Sarason, Differentiable solutions of symmetrizable and singular symmetric first order systems, Arch. Rational Mech. Anal. 26 (1967), 357–384. MR 228808, DOI 10.1007/BF00281640
- Leonard Sarason, On weak and strong solutions of boundary value problems, Comm. Pure Appl. Math. 15 (1962), 237–288. MR 150462, DOI 10.1002/cpa.3160150301
- R. S. Phillips, Dissipative hyperbolic systems, Trans. Amer. Math. Soc. 86 (1957), 109–173. MR 90748, DOI 10.1090/S0002-9947-1957-0090748-2
- R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193–254. MR 104919, DOI 10.1090/S0002-9947-1959-0104919-1
- R. S. Phillips and Leonard Sarason, Singular symmetric positive first order differential operators, J. Math. Mech. 15 (1966), 235–271. MR 0186902
- Jeffrey B. Rauch and Frank J. Massey III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. MR 340832, DOI 10.1090/S0002-9947-1974-0340832-0
- Steve Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys. 104 (1986), no. 1, 49–75. MR 834481
- David S. Tartakoff, Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J. 21 (1971/72), 1113–1129. MR 440182, DOI 10.1512/iumj.1972.21.21089
- Mikio Tsuji, Analyticity of solutions of hyperbolic mixed problems, J. Math. Kyoto Univ. 13 (1973), 323–371. MR 320540, DOI 10.1215/kjm/1250523376
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 167-187
- MSC: Primary 35L50
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797053-4
- MathSciNet review: 797053