The homotopy theory of cyclic sets
HTML articles powered by AMS MathViewer
- by W. G. Dwyer, M. J. Hopkins and D. M. Kan
- Trans. Amer. Math. Soc. 291 (1985), 281-289
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797060-1
- PDF | Request permission
Abstract:
The aim of this note is to show that the homotopy theory of the cyclic sets of Connes [3] is equivalent to that of $\operatorname {SO} (2)$-spaces (i.e. spaces with a circle action) and hence to that of spaces over $K(Z,2)$.References
- Kenneth S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419–458. MR 341469, DOI 10.1090/S0002-9947-1973-0341469-9
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Alain Connes, Cohomologie cyclique et foncteurs $\textrm {Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953–958 (French, with English summary). MR 777584
- E. Dror, W. G. Dwyer, and D. M. Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670–672. MR 587952, DOI 10.1090/S0002-9939-1980-0587952-1
- W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), no. 4, 427–440. MR 584566, DOI 10.1016/0040-9383(80)90025-7
- W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), no. 2, 139–155. MR 744846, DOI 10.1016/0040-9383(84)90035-1
- W. G. Dwyer and D. M. Kan, Equivariant homotopy classification, J. Pure Appl. Algebra 35 (1985), no. 3, 269–285. MR 777259, DOI 10.1016/0022-4049(85)90045-3 T. G. Goodwillie, Cyclic homotopy derivations and the free loop space, preprint.
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432 —, Higher algebraic $K$-theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, 1973, pp. 85-147.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 281-289
- MSC: Primary 55P15; Secondary 18F25, 19D55, 55U35
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797060-1
- MathSciNet review: 797060