On monomial algebras of finite global dimension
HTML articles powered by AMS MathViewer
- by David J. Anick
- Trans. Amer. Math. Soc. 291 (1985), 291-310
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797061-3
- PDF | Request permission
Abstract:
Let $G$ be an associative monomial ${\mathbf {k}}$-algebra. If $G$ is assumed to be finitely presented, then either $G$ contains a free subalgebra on two monomials or else $G$ has polynomial growth. If instead $G$ is assumed to have finite global dimension, then either $G$ contains a free subalgebra or else $G$ has a finite presentation and polynomial growth. Also, a graded Hopf algebra with generators in degree one and relations in degree two contains a free Hopf subalgebra if the number of relations is small enough.References
- David J. Anick, Noncommutative graded algebras and their Hilbert series, J. Algebra 78 (1982), no. 1, 120–140. MR 677714, DOI 10.1016/0021-8693(82)90104-1
- David J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641–659. MR 846601, DOI 10.1090/S0002-9947-1986-0846601-5
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Luchezar L. Avramov, Free Lie subalgebras of the cohomology of local rings, Trans. Amer. Math. Soc. 270 (1982), no. 2, 589–608. MR 645332, DOI 10.1090/S0002-9947-1982-0645332-0
- Jörgen Backelin, La série de Poincaré-Betti d’une algèbre graduée de type fini à une relation est rationnelle, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 13, A843–A846 (French, with English summary). MR 551760
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938 J. A. Eagon, Ideals generated by the subdeterminants of a matrix, Thesis, Univ. of Chicago, 1961.
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Yves Félix and Stephen Halperin, Formal spaces with finite-dimensional rational homotopy, Trans. Amer. Math. Soc. 270 (1982), no. 2, 575–588. MR 645331, DOI 10.1090/S0002-9947-1982-0645331-9 Y. Felix and J. C. Thomas, Characterization of spaces whose rational category is two, preprint.
- E. S. Golod, On nil-algebras and finitely approximable $p$-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273–276 (Russian). MR 0161878
- Jean-Michel Lemaire, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Mathematics, Vol. 422, Springer-Verlag, Berlin-New York, 1974 (French). MR 0370566 C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda $\operatorname {Ext}$-algebra, Reports No. 5, Matematiska Inst., Stockholms Universitet, Sweden, 1976.
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311
- Jan-Erik Roos, Relations between Poincaré-Betti series of loop spaces and of local rings, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 285–322. MR 563510
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 291-310
- MSC: Primary 16A06; Secondary 16A60, 55P35
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797061-3
- MathSciNet review: 797061