Divisions of space by parallels
HTML articles powered by AMS MathViewer
- by G. L. Alexanderson and John E. Wetzel
- Trans. Amer. Math. Soc. 291 (1985), 363-377
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797066-2
- PDF | Request permission
Abstract:
An arrangement of hyperplanes in ${\mathbb {E}^d}$ is a "plaid" provided its hyperplanes form no multiple flats of intersection and lie in parallel families that are in general position. We develop some geometrically natural formulas for the number of $r$-faces that are formed by such an arrangement.References
- G. L. Alexanderson and John E. Wetzel, Arrangements of planes in space, Discrete Math. 34 (1981), no. 3, 219–240. MR 613402, DOI 10.1016/0012-365X(81)90002-9
- Gerald L. Alexanderson and John E. Wetzel, Simple partitions of space, Math. Mag. 51 (1978), no. 4, 220–225. MR 506723, DOI 10.2307/2689466
- R. C. Buck, Partition of space, Amer. Math. Monthly 50 (1943), 541–544. MR 9119, DOI 10.2307/2303424
- Henry W. Gould, Combinatorial identities, Henry W. Gould, Morgantown, W. Va., 1972. A standardized set of tables listing 500 binomial coefficient summations. MR 0354401 Branko Grünbaum, Convex polytopes, Interscience, New York, 1967.
- P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Mathematical Society Lecture Note Series, vol. 3, Cambridge University Press, London-New York, 1971. Prepared in collaboration with J. E. Reeve and A. A. Ball. MR 0301635
- John Riordan, Combinatorial identities, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979. Reprint of the 1968 original. MR 554488 J. Steiner, Einige Gesetze über die Theilung der Ebene und des Raumes, J. Reine Angew. Math. 1 (1826), 349-364.
- Thomas Zaslavsky, A combinatorial analysis of topological dissections, Advances in Math. 25 (1977), no. 3, 267–285. MR 446994, DOI 10.1016/0001-8708(77)90076-7
- Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. MR 357135, DOI 10.1090/memo/0154
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 363-377
- MSC: Primary 51M20; Secondary 05A19
- DOI: https://doi.org/10.1090/S0002-9947-1985-0797066-2
- MathSciNet review: 797066