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CORRECTION TO "VANISHING THEOREMS AND

KAHLERITY FOR STRONGLY PSEUDOCONVEX MANIFOLDS"

BY

VO VAN TAN

It has been brought to my attention by N. Coltoiu that there was a gap in the

proof of Theorem II in [3]. By using the same notations as in [3], the proof of our

Theorem II can be corrected as follows.

Theorem II. Let (X, S) be a strongly pseudoconvex manifold. If dim S = 1, then X

is Kahlerian. In particular, any strongly pseudoconvex surface is Kahlerian.

First of all the following result is needed.

Lemma [1]. Let S be a compact C analytic space and let L be a holomorphic line

bundle on S. Let us assume that, for every positive dimensional subspace T of S, there

exist an integer n and a nonzero holomorphic section of L" ® 0T which vanishes at

some point of T. Then L is positive.

Notations. From now on, a positive line bundle (resp. semipositive line bundle) will

be denoted by L > 0 (resp. L ^ 0).

Proof of Theorem II. Without loss of generality, one can assume that S is

irreducible. So let xbea point on S and let tr: X -> X be the blowing up of X at x

inducing a biholomorphism X\D = .Af\ {x}.

Let T be the strict transform of S under m; it is clear the A' is a strongly

pseudoconvex manifold with its exceptional set S = D U T.

Claim. There exists a positive line bundle L on X \ D.

In fact, let L, := [D] be the line bundle determined by D. Since dim T = 1, the

Lemma above tells us that LX\T > 0. In view of the compactness of T, one can find

a relative compact neighborhood V of T in X such that

(*) Lx > 0 on V and by construction Lx 3* 0 on X\ D.

Since X is strongly pseudoconvex, one can find a line bundle L2 on X such that

(**) L2>0onI\S and L2 > 0 on X.

In view of (*) and (**), it follows that, for some N » 0, the line bundle

L := Lx ® Vf > 0 on (X\ S)UFd X\D. Hence our claim is proved.

Consequently, X\D - X\{x) is Kahlerian. The result in [2] tells us that Xitself

is Kahlerian.    Q.E.D.
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