## A “Tits-alternative” for subgroups of surface mapping class groups

HTML articles powered by AMS MathViewer

- by John McCarthy PDF
- Trans. Amer. Math. Soc.
**291**(1985), 583-612 Request permission

## Abstract:

It has been observed that surface mapping class groups share various properties in common with the class of linear groups (e.g., $[\mathbf {BLM}, \mathbf {H}]$). In this paper, the known list of such properties is extended to the “Tits-Alternative”, a property of linear groups established by J. Tits $[\mathbf {T}]$. In fact, we establish that every subgroup of a surface mapping class group is either virtually abelian or contains a nonabelian free group. In addition, in order to establish this result, we develop a theory of attractors and repellers for the action of surface mapping classes on Thurston’s projective lamination spaces $[\mathbf {Th1}]$. This theory generalizes results known for pseudo-Anosov mapping classes $[\mathbf {FLP}]$.## References

- Hyman Bass and Alexander Lubotzky,
*Automorphisms of groups and of schemes of finite type*, Israel J. Math.**44**(1983), no. 1, 1–22. MR**693651**, DOI 10.1007/BF02763168 - Joan S. Birman,
*Braids, links, and mapping class groups*, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR**0375281** - Joan S. Birman,
*The algebraic structure of surface mapping class groups*, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975) Academic Press, London, 1977, pp. 163–198. MR**0488019** - Joan S. Birman, Alex Lubotzky, and John McCarthy,
*Abelian and solvable subgroups of the mapping class groups*, Duke Math. J.**50**(1983), no. 4, 1107–1120. MR**726319**, DOI 10.1215/S0012-7094-83-05046-9 *Travaux de Thurston sur les surfaces*, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR**568308**- Jane Gilman,
*On the Nielsen type and the classification for the mapping class group*, Adv. in Math.**40**(1981), no. 1, 68–96. MR**616161**, DOI 10.1016/0001-8708(81)90033-5 - John L. Harer,
*Stability of the homology of the mapping class groups of orientable surfaces*, Ann. of Math. (2)**121**(1985), no. 2, 215–249. MR**786348**, DOI 10.2307/1971172 - R. C. Penner and J. L. Harer,
*Combinatorics of train tracks*, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR**1144770**, DOI 10.1515/9781400882458 - W. J. Harvey,
*Geometric structure of surface mapping class groups*, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 255–269. MR**564431** - A. Hatcher and W. Thurston,
*A presentation for the mapping class group of a closed orientable surface*, Topology**19**(1980), no. 3, 221–237. MR**579573**, DOI 10.1016/0040-9383(80)90009-9 - Steven P. Kerckhoff,
*The Nielsen realization problem*, Ann. of Math. (2)**117**(1983), no. 2, 235–265. MR**690845**, DOI 10.2307/2007076
J. McCarthy, - Jakob Nielsen,
*Surface transformation classes of algebraically finite type*, Danske Vid. Selsk. Mat.-Fys. Medd.**21**(1944), no. 2, 89. MR**15791**
R. Penner, - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0
—, Lectures Notes, Boulder, Colorado, 1980.
—, - J. Tits,
*Free subgroups in linear groups*, J. Algebra**20**(1972), 250–270. MR**286898**, DOI 10.1016/0021-8693(72)90058-0

*Normalizers and centralizers of pseudo-Anosov mapping classes*, preprint available upon request. —,

*Subgroups of surface mapping class groups*, Ph.D. thesis, Columbia University, May, 1983. J. Morgan,

*Train tracks and geodesic laminations*, Columbia University Lecture Notes (to appear).

*A computation of the action of the mapping class group on isotopy classes of curves and arcs in surfaces*, Ph.D. thesis, Massachusetts Institute of Technology, 1982. W. P. Thurston,

*The geometry and topology of*$3$

*-manifolds*, Princeton Univ. Lecture Notes (to appear). —,

*On the geometry and dynamics of diffeomorphisms of surfaces*, preprint.

*Hyperbolic structures on*$3$

*-manifolds*. II, preprint, July, 1980.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**291**(1985), 583-612 - MSC: Primary 57M99; Secondary 20F38, 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800253-8
- MathSciNet review: 800253