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COMPLETELY UNSTABLE DYNAMICAL SYSTEMS 
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ABSTRACT. We associate with the C (r;;. 1) dynamical system </> on an m-manifold 
M, the orbit space M/</>. defined to be the set of orbits of </> with the quotient 
topology. If </> is complete~y unstable, M/</> turns out to be a C(m - 1)-nonseparated 
manifold. It is known that for a completely unstable flow </> on a contractible 
manifold M, M /</> is Hausdorff if and only if </> is parallelizable. In general, we place 
an order on the non-Hausdorff points of M/</> (essentially) by setting p < q if and 
only if 'IT- 1( q) ~ r( 'IT-l(p». Our result is that (M, </» is topologically equivalent to 
(M', </>') if and only if M/</> is order isomorphic to M'/</>'. 

O. Introduction. A dynamical system cp on an m-manifold M is said to be 
completely unstable if it has no nonwandering points. Such systems occur very 
naturally. For example, on R2 any dynamical system without equilibria is completely 
unstable; and, of course, the restriction of an arbitrary dynamical system to the 
complement of its nonwandering set is completely unstable. All open manifolds 
admit completely unstable systems. The absence of nonwandering points does not 
imply the absence of recurrence phenomena, and it is well known that such systems 
can be extremely complex (cf. [TW, Nil-Ni4 and HRD. There is an example due to 
Wazewski [Wa] of a vector field without singularities on R2! with every orbit of the 
corresponding dynamical system a separatrix. 

Our aim is to classify completely unstable systems (M, cp) up to topological 
equivalence in terms of the associated orbit space M/cp. Topologically M/cp is, as 
usual, the set of orbits of cp with the finest topology making the natural projection 'IT: 
M ~ M/cp continuous. An additional order structure on M/cp is necessary if M/cp is 
to completely determine (M, cp). This order structure is required to specify the 
sequence in which the orbits of a prolongationallimit set J+(x) are met by an orbit 
of cp, and is defined essentially as follows: p < if in M/cp if and only if 'IT-lUi) ~ 
J +( 'IT -l( p)) in M. (The actual order is necessarily more complex; the preceding 
description conveys the basic idea and enables us to state our main result without 
elaborate preliminaries.) The resulting ordered orbit space characterizes (M, cp). 

CLASSIFICATION THEOREM. For r ~ 1, two c r completely unstable dynamical 
systems (M, cp) and (M', cp') are topologically equivalent if and only if the associated 
orbit spaces M / cp and M' / cp' are homeomorphic by an order preserving homeomor-
phism. 
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Essentially the same result, in the case where both M, M' = R2, is given III 

Haefliger and Reeb [UR]; the result in the case when both M and M' are 
2-manifolds is given in [Nel]. 

Under the assumption that cp is C' (r ~ 1) and completely unstable, the topology 
of M/cp is locally (m - I)-Euclidean and has a countable basis; we refer to such a 
space as a nonseparated manifold. M/cp is a Hausdorff space (and hence a manifold 
in the usual sense) precisely in the case cp is parallelizable [Ma]. The classification 
theorem also holds (with the same proof) for eO systems, provided m = dim(M) .::;; 3. 
In case m ~ 4, there are pathological examples of completely unstable eO systems 
that do not admit local cross-sections that are locally Euclidean [Ne2], so that M/cp 
is not a nonseparated manifold. Our proof of the classification theorem does extend 
to eO systems that do admit locally Euclidean cross-sections, in all dimensions, but 
not to these pathological cases. 

In §I, we give most of the definitions and notation required in the proof of the 
classification theorem; the proof itself occupies §§2-7. Finally in §8, we give an 
application: we prove that the so-called Coleman conjecture (whether or not a flow 
on Rm X Rn with a topologically hyperbolic equilibrium is necessarily locally topo-
logically equivalent to a flow with a differentiably hyperbolic (generic) rest point) is 
true in the case m = 1 or n = 1. The conjecture is known to be false in all other 
cases [Ne3, Pi]. 

I. Preliminaries. 
1.1. DEFINITIONS AND NOTATION. Throughout what follows M denotes a e r 

m-manifold r = 0,1, ... ,00; cp: M X RI ~ M denotes a er dynamical system (flow) 
on M. We will use the following notation: S· T = {cp(x, t)lx E s, t E T} for S ~ 
M and T ~ RI; X . T = {x} . T; and X· t = CPt(x) = cp(x, t) for x E M and t E RI. 
The orbit of x E M is the set y(x) = x . RI; y(x) inherits an orientation from the 
natural orientation of RI. Also throughout what follows, for any set A ~ M, 
Int A = .A and A will denote the interior and closure of A in M respectively. 

If tJ;: N X RI ~ N is another dynamical system, we say that cp and tJ; are 
topologically equivalent if there is a homeomorphism h of M onto N taking orbits of cp 
onto orbits of tJ; preserving orientation. 

A set U ~ M is said to be wandering (with respect to cp) if there exists to E RI such 
that U· t n U = 0 for each t with It I ~ to. A point x E Mis nonwandering if it has 
no wandering neighborhood. Equivalently, x E M is nonwandering if x E J+(x), 
where J+(x) denotes the set of limits of sequences {xn· tn}, where {xn} converges 
to x and {tn} tends to 00. For A ~ M set J+(A) = UxEAJ+(X). The (closed 
cp-invariant) set of all nonwandering points of cp will be denoted by Q( cp). 

A flow cp is completely unstable if Q( cp) = 0. If cp is a completely unstable e r flow 
on an m-manifold M, a cross-section of cp is a set S ~ M for which the mapping h: 
S X RI ~ M defined by h (s, t) = s . t is a homeomorphism of S X RI onto a subset 
of M. It is known that if r ~ 1, or if r = ° and m .::;; 3 [Whl, Wh2], then for any 
point x E M there is a cross-section S satisfying the following conditions: 

(a) S is homeomorphic to the (closed) unit disk Dm-I ~ Rm-I, and 
(b) x is in the relative interior of S. 
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In the sequel we will always use the term "cross-section through X" in the restricted 
sense of a cross-section satisfying (a) and (b). 

A topological space is a nonseparated manifold if it is locally Euclidean and has a 
countable basis; the usual Hausdorff separation axiom is not assumed. 

Given a dynamical system M/tP the orbit space M/tP is the set of orbits of tP with 
the quotient topology (the finest topology in which the natural projection: 'IT: 
M -+ M/tP is continuous). For a completely unstable flow tP, M/tP is well behaved, 
as is shown by the following result, which is essentially Theorem 3 of [Ma]. 

1.2. PROPOSITION. If tP is a completely unstable c r (r ~ 1) flow on the m-manifold 
M, then M/tP is a nonseparated (m - I)-manifold and admits a unique C'differentia-
ble structure with respect to which 'IT: M -+ M/tP is the projection of a locally trivial c r 

fiber bundle with fiber RI. 

1.3. REMARKS. (a) In general M/tP will fail to be Hausdorff even when tP is 
completely unstable. In fact it is known [Ma, Proof of Theorem 4] that for a 
completely unstable flow tP on a contractible manifold M, M / tP is Hausdorff if and 
only if tP is parallelizable, i.e., if and only if there is a set S ~ M (global cross-
section) such that the mapping h: S X RI -+ M defined by h(x, t) = x . t is a 
homeomorphism of S X RI onto M. 

(b) Proposition 1.2 does not hold in general for CO flows. It does hold for CO 
flows if m ,.;;; 3 [CO] but in all higher dimensions there are examples of CO 
completely unstable flows (in fact parallelizable flows) for which M/tP is not locally 
Euclidean. The reason is that local cross-sections of CO flows do not have to be 
locally Euclidean; examples are given in [Ch and Ne2] and are based on the original 
construction of Bing [Bi] of a nonmanifold X with the property that X X RI is 
homeomorphic to R4. 

1.4. EXAMPLE. We given an example to motivate the introduction of an order 
structure on the orbit space. Consider the flows tP, tP' defined on R2 by the solutions 
of the following system of differential equations: 

(tP) : 
{ 

. 2 
X = ~m x, 

y = gosx, 

(tP') : 

0,.;;; x ,.;;; 2'IT, 
elsewhere, 

0,.;;; x,.;;; 2 'IT , 
elsewhere. 

0,.;;; x ,.;;; 'IT, 
'IT,.;;;x,.;;;2'IT, 
elsewhere, 

0,.;;; x,.;;; 2 'IT , 
elsewhere. 

The phase portraits of tP and tP' are shown in Figure 1. We may determine the 
topological type of the orbit space R2/tP by considering the cross-sections indicated 
by the dotted lines in Figure I(a). 
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It is clear that R2/cf> is also the quotient of these three copies of Rl, in which those 
pairs of points lying on the same orbit of cf> are identified. The resulting nonsep-
arated I-manifold R2/cf> is indicated schematically in the figure. Note that, while 
each point of R2/cf> has neighborhoods homeomorphic to an open interval, neither of 
the pairs {p, q}, {q, r} can be separated with disjoint open sets. 

These "non-Hausdorff' points p, q, r of R2/cf> correspond to orbits that are 
separatrices in the terminology of [Ma]. R2/cf>' may be determined analogously. 

Our aim is to classify completely unstable dynamical systems (M, cf» up to 
topological equivalence in terms of the orbit spaces M/cf>. Note that in the present 
example, (R2, cf> ) and (R2, cf>') are not topologically equivalent; nevertheless R2 / cf> and 
R2 / cf>' are homeomorphic. Thus we need to impose some additional structure on 
M / cf> in order that the resulting space completely determines (M, cf» in the general 
case. In this example we can accomplish this by imposing a natural order relation on 
the non-Hausdorff points of the orbit space as follows: 
(*) x<y ifandonlyif 7T-l(Y)~J+(7T-l(X)). 

The order imposed on R2 / cf> is then p < q and q < r, while that imposed on R2/ cf>' 
is p < q and r < q. It is easy to verify that there is no order preserving homeomor-
phism between R2/cf> and R2/cf>', so the ordered spaces are adequate to distinguish 
the flows cf> and cf>'. One can prove in fact, that two completely unstable flows on R2 
are topologically equivalent if and only if there is an order preserving homeomor-
phism between the corresponding orbit spaces, ordered by (*). 

It turns out, however, that the natural order defined by (*) is not sufficient for 
more general completely unstable flows. The modification that is required is the 
subject of the next section. 

2. The ordered orbit space M / cf>. 
2.1. DEFINITION. Let (M, cf> ) be a completely unstable dynamical system with orbit 

space M/cf>. Let 7T: M -+ M/cf> denote the natural projection and for eachp EM, set 
p = 7T(p) E M/cf>. We define an order relation < on certain points of M/cf> and on 
certain subsets of M/cf> as follows: 

(a) If p and q are distinct points of M/cf>, we say p < q if and only if 7T-l(q) ~ 
J+( 7T- 1(p». 

(b) Suppose p and q in M/cf> satisfy p < q and q < p. Given A, B ~ M/cf> with 
pEA, q E B and satisfying 

(i) A \ { p} = B \ { q }'-=-; """"""--'"7" 

(ii) pEA \ { p }, q E B \ { q }; and 
(iii) p and q cannot be separated with disjoint open sets in A U B, 

we say A < B if and only if there are sections S and T lying over A and B 
respectively such that orbits of cf> meet S before they meet T. 

The additional order structure given by (b) removes the ambiguity inherent in the 
possibility that we may have both p < q and q < P under the order defined by J + 

alone. This is made precise in the following proposition. 

2.2. PROPOSITION. Let A, B, p, q be as in the definition, with A < B; then we cannot 
also have B < A. 
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PROOF. Let Sand T be sections over A and B respectively, realizing A < B. Set 
p = 7T-1( jJ) Ii Sand q = 7T-l(q) Ii T. Let {Pn} be a sequence in S converging to p 
and let qn E Y(Pn) Ii T(n E Z+), so {qn} converges to q. Then there is a sequence 
{t n} defined by Pn . t n = q n· Note that we must have {t n} ~ 00. For t n is positive by 
our assumption on Sand T; also if {t n} had a bounded subsequence, we could 
conclude p E y(q) ~ J+(y(p)) = J+(p), contrary to our assumption that </> is 
completely unstable. 

Now suppose S' and T are arbitrary sections over A and B respectively. For each 
n E Z+, set 

and define t~ by q~ = p~. t~. Then since {p~} converges to yep) Ii S', {q~} 

converges to y(q) Ii T', and {tn} ~ 00, it follows that {t~} ~ 00. Thus, at least for 
sufficiently large n, orbits of </> meet S' before they meet T. This proves the 
proposition. 

2.3. REMARKS. (a) We note that it follows from the proof of 2.2 that if A < Band 
S' and T' are any disjoint connected sections over A and B respectively, then no orbit 
of </> can meet T before it meets S'. 

(b) The requirement (b) in the definition of the order is undesirable but necessary. 
Examples are given in [Nel] of flows </>, </>' on R2 \ {O} which are not distinguished 
by their orbit spaces ordered by J+ alone. 

3. Statement of the classification theorem. Our main result is a complete classifica-
tion of C r completely unstable flows on open manifolds in terms of the associated 
ordered orbit space. 

3.l. CLASSIFICATION THEOREM. If </> and </>' are completely unstable C r flows (r ~ 1) 
on m-manifolds M and M' respectively, then (M, </» and (M', </>') are topologically 
equivalent if and only if M/</> is order isomorphic to M', </>'. 

3.2. REMARKS. (a) This result for M = M' = R2 is stated by Haefliger and Reeb in 
[HR]. It is proved for CO flows on 2-manifolds in [Nel]. 

(b) Theorem 3.1 also holds for CO flows (with the same proof) provided m ~ 3, or 
for arbitrary m, provided we assume that </> and </>' admit cross-sections at every 
point that are locally Euclidean, so that M/</> and M', </>' are nonseparated mani-
folds. 

3.3. Discussion. The fact that the ordered orbit space is an invariant of the 
topological equivalence class of (M, </» follows immediately from the definitions. 
The proof of the converse occupies §§4-7. Since this proof is rather lengthy, we 
conclude this section with a brief sketch which the reader may find helpful. Our aim 
is to lift a given order preserving homeomorphism h: M' /</>' ~ M/</> to a topological 
equivalence k: (M', </>') ~ (M, </». We note that both 7T: M ~ M/</> and 7T': M' ~ 
M' /</>' are projections of locally trivial Rl bundles with structure group the group 
.rof all translations of Rl; in this setting we seek a bundle map k [St, §2.5] covering 
h. We first construct explicit parametrizations of both bundles. For (M, </» this 
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consists of an atlas {Tnln E Z+} for M/tfJ, cross-sections an: Tn ~ M, Sn = an(Tn) 
of tfJ, and" time" maps lij: 1'; n ~ ~ RI defined by 

tfJ(ai{x), liix)) = aix) (x E 1'; n ~; i, j E Z+). 

Then 'IT- I(1';) is parametrized by 1[Ii: 1'; X RI ~ 'IT- I(1';): 
1[Ii(X, t) = tfJ(ai(x), t). 

The coordinate transformations are then given by 1[1~/ 0 1[Ii(X, t) = (x, t + Jj;(x)), so 
the structure of the bundle 'IT: M ~ M/tfJ is determined by the maps gi/ 1'; n ~ ~.'T, 
where gij assigns x in 1'; n ~ to the translation by /;/ x) in.'T. 

The bundle (M', tfJ') is parametrized analogously by an atlas {Tn'ln E Z+} cross-
sections S; = a~(Tn'), and maps 1// 1';' n ~' ~ RI, g;j: 1';' n ~' ~.'T. We first 
arrange that the two parametrizations are compatible under h, i.e., Tn' = h-I(Tn) 
(n E Z+) and 

sgn/;ix) = Sgn/ij(h-I(x)) 

for all values of i, j, x, where both sides are defined. (This simply means that each 
pair Si' Sj of cross-sections of tfJ is related by tfJ in the same way the corresponding 
cross-sections S;" Sj are related by tfJ'; viz., a tfJ orbit 'IT-I(x) meets Si ahead of Sj if 
and only if the corresponding tfJ' orbit 'IT,-I(h-I(x)) meets S;' ahead of Sj.) We next 
show that we can reparametrize the flow tfJ in this situation so that in fact 
/;/x) = /;j(h-I(x)), again for all relevant values of i, j, x. The required bundle 
equivalence k may then be defined locally by 

k( 1[I;(x', t)) = 1[Ii(h(x'), t). 

It is easily checked that k is a well-defined homeomorphism of M' onto M. Thus tfJ' 
is topologically equivalent to the reparametrized version of tfJ, and hence to tfJ itself. 

4. Covering systems of cross-sections. In this section tfJ denotes a C r completely 
unstable flow on an m-manifold M, with r ~ 1. We construct a locally finite 
collection of cross-sections of tfJ whose images under the natural projection 'IT: 
M ~ M/tfJ cover M/tfJ. 

4.1. DEFINITION. Fix E> 0 and let Ie = (-E, e). A neighborhood Up of a point 
p E M is called an e-flow box at p if there is a cross-section S ~ M with pES and 
such that the mapping h: S X Ie ~ M defined by h(s, t) = s . t is a homeomor-
phism of S X Ie onto ~. 

It is known [BS, Theorem 2.9] that every point p E M admits an e-flow box for 
which S is homeomorphic to the closed disk D m - I of dimension m - 1. 

4.2. DEFINITION. A collection {Sili E Z+} of cross-sections of tfJ is called a 
covering system for (M, tfJ) if it satisfies the following conditions: 

(a) each Si is homeomorphic with D m - I ; 

(b) {Sili E Z +} is locally finite; 
(c) U{ S;li E Z+} . RI = M; and 
(d) the S; are pairwise disjoint. 
Note that according to our definition of cross-section, no orbit of tfJ meets S; more 

than once. 



646 s. K. GOEL AND D. A. NEUMANN 

4.3. LEMMA. Any C r completely unstable dynamical system (M, </» with r ~ 1 admits 
a covering system of cross-sections. 

PROOF. Since M is a-compact, we may write M = U{Mklk E Z+}, where each Mk 
is compact, Mk ~ Mk+1 and MI = 0. Let RI ~ TI be cross-sections of </>, both 
homeomorphic to D m-\ and so that the corresponding flow boxes GI = RI . IE and 
HI = TI . IE' satisfy GI ~ HI· 

We now construct inductively a locally finite cover of M by flow box pairs 
analogous to (GI, HI). Suppose that we have determined integers 1 = ki < k2 < 
... kn' cross-sections R; ~ 1'; of </> (1 ~ i ~ k n) each homeomorphic to D m-\ and 
corresponding flow boxes G; = R; . IE' H; = 1'; . Ie' satisfying the following: 

(a) G; ~ H; for 1 ~ i ~ k n ; , , 

(b) for eachJ ~ n - 1, Mj+1 \Mj ~ U{G';lkj < i ~ kj+d; and 
(c) for each 2 ~J ~ n - 1, Mj - I n U{H;lkj < i ~ kj+d = 0. 
Now for each x E Mn+1 \Mn choose cross-sections Rx ~ Tx through x, each 

homeomorphic to D m-\ and flow boxes Gx = Rx . IE' Hx = Tx· IE" so that x E Gx 
~ Gx ~ Hx and Hx n Mn- I = 0. Finitely many of G: cover Mn+1 \ Mn; replace the 
corresponding indices with integers k n + 1, ... ,kn + l . By induction, we obtain a 
collection {1';li E Z+} of cross-sections satisfying (a)-(c) of 4.2. 

Of course the 1'; need not be pairwise disjoint, so we now modify the collection 
{1';} to obtain a disjoint family. We again proceed by induction; thus suppose that 
we have constructed cross-sections SI' S2' ... ,S'(n) satisfying: 

(a) each S; is homeomorphic to D m - I ; 

(b) each S; is contained in some Hpj ~ n; 
(c)U{S;li ~ l(n)}· RI d U{RjIJ ~ n}· RI; and 
(d) the S; are pairwise disjoint. 
Fix p E R n+l. Choose q E P . IE so that q $. Rn+1 and q is in none of the S; 

0+1 

(i ~ l(n», say q = p . tp (tp E IE ). Choose a flow box Sp· IE ~ Tn+1 . IE so 
n+1 p n+l 

that Sp is homeomorphic to Dm-\ q ESp, Sp . t ~ Tn+1 for some t E IEo+1 and that 
Sp is disjoint from all the S; (i ~ l( n» (Figure 2). 

. I 
'-..... Tn+l t;n+l 
.-~---------

FIGURE 2 
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Let '17: Tn+l . Rl -+ Tn+l denote the natural projection. Since Rn+l is compact, 
finitely many of the projections {'17(Sp)lp E Rn+d cover R n+1• Label the corre-
sponding cross-sections 

S'(n)+l' S'(n)+2'··· ,S'(n+l)· 

Note that if the Sj (l(n) + 1 ,.. i,.. l(n + 1)) are not already pairwise disjoint among 
themselves, they may be made so by small translations along the flow since they are 
all parallel to Tn + 1, and that this may be done without introducing any intersections 
with the Sj (i ,.. l(n)). By induction, we obtain the collection {Sjli E Z+}; it is easily 
checked that this collection satisfies (a)-(d) of 4.2. 

4.4. EXAMPLE. A natural question now arises as to the possibility of further 
simplifying a covering system of cross-sections. The proof of the classification 
theorem would be greatly simplified, for example, if one could always obtain a 
covering system {Sjli E Z+} whose family {'17(S;)li E Z+} of projections was a 
locally finite (or even point finite) cover of M/q,. We give an example to show that 
this is not possible in general. 

Consider the manifold M = I X Rl, where 1= [0,1]. Let {rnln E Z+} be an 
enumeration of rationals in I with r1 = 0. Let an = (rn' n) E M for each n E Z +. Let 
M = M \ U{ a n I n E Z +}. Let q, be a flow on M defined (in Cartesian coordinates) 
by the differential equations 

x = 0, y = f(x, y), x,yEM, 

where f: if -+ [0,1] is a smooth function that vanishes exactly on the set {anln E 

Z +}. The phase portrait is as shown in Figure 3. 
Let {Snln ~ I} be a covering system of cross-sections such that each Sj ~ I. We 

show that there exist orbits of q, which meet infinitely many cross-sections. Without 
loss of generality, let the cross-section Sl be the compact interval [0,1]. For each}, 
let Pj denote the projection on Sl of the right-hand endpoint of the section Sj. 

Since {Sn} is a covering system, there exists a cross-section, say S2' covering the 
orbit through (rl' 2) and extending to the right of it as well. Pick an irrational 
number q2 in the open interval (0, P2). Note that the orbit through (q2'0) meets at 
least two sections (Figure 4). Now pick a rational number, say rk2, in the interval 
(0, q2) such that gu(rk ) is finite, where gjj(x) denotes the time along the orbit of x 
from Sj to Sj. Thus the orbit through the point (rk2 , 0) meets at least two sections. 

As above, there exists a section, say S3' covering the orbit through (rk2 , k2 + 1) 
and extending to the right of it as well. Pick an irrational number q3 in the interval 
(rk2 , min(q2' P3' rk2 + t,l)). Observe that the orbit through (q3'0) meets at least 
three sections. 

Continuing this process by induction, we obtain a nested sequence 
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FIGURE 3 FIGURE 4 

of intervals such that the orbits through both (rkJ , 0) and (qj' 0) meet at least j 
sections. Moreover, from the above construction, we have 

n (rk ;, qi+d = n [rk ;, qi+1] (where rkj = 0). 
i>l i>l 

Since [0,1] is a complete metric space and rk , qi are so chosen that diam[rk , qi+d .::;; 
1/2i -1, ni >-l [rk ' qi+ 1] contains exactly one 'point, say p. If p is an irratio~al point, 

~ , 
the orbit of (p, 0) meets infinitely many sections; if p = (rk' 0) for some k, then the 
orbit through (rk' k + 1) meets infinitely many sections. 

5. Compatible systems of cross-sections. We now consider two c r completely 
unstable dynamical systems (M', 1>'), (M, 1» and a given order preserving homeo-
morphism h: M' / 1>' ~ M /1> of the corresponding orbit spaces, ordered as in §2. 
The object of the present section is to obtain a covering system {S;ln E Z +} of 
cross-sections of 1>' and a covering system {Snln E Z +} of cross-sections of 1> that 
are compatible in the sense that the projections {7T'S;} and {7TSn } correspond for 
each n under h, and that for any pair (i, j) of indices, Si and Sj are related by 1> in 
the same way that the corresponding sections S/ and S; are related by 1>'. We make 
this precise in the following definition. 
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5.1. DEFINITION. For each n E Z+, set T: = w'(S;), where w': M' -+ M'/cp' is the 
natural projection; let a~: T: -+ M' be the (unique) continuous map with w' 0 a~ = 1 
and a~(T:) = S;. For each pair (i, j) set A;} = T;' n 1)' and define fii: A;} -+ R1 by 
cp'(a;(x'),/;i(x')) = aj(x'); (so/;i(x) is the "time" along the orbit W,-l(X') from S/ 
to Sf). We note thatfij is continuous on its domain. 

For n E Z +, set Tn = h (T:). Suppose {Sn I n E Z +} is a covering system of 
cross-sections of cp, with w(Sn) = Tn for each n E Z +. Define an' fi}' Ai} as for 
(M', cp'). We say that {Sn} is compatible with {S;} if, for each pair (i, j) of indices, 
we have 

(c) sgn /;/x) = sgn /;j(h-1(x)) (x E Ai}). 

5.2. PROPOSITION. If (M', cp'), (M, cp) are c r (r ~ 1) completely unstable dynamical 
systems, and h: M'/cp' -+ M/cp is an order preserving homeomorphism of the corre-
sponding orbit spaces, then there exist compatible covering systems of cross-sections 
{Snln E Z+} of(M, cp) and {S;ln E Z+} of(M', cp'). 

The proof of this proposition is somewhat lengthy so we break it up into several 
sections. We begin with two preliminary results, a general lemma (5.4) on separation 
of semicontinuous functions by continuous functions, and a technical lemma (5.5) 
that isolates the essential consequence of the fact that h preserves order. We next fix 
a covering system {S;ln E Z +} for (M', cp') and construct liftings an: Tn -+ M 
(Tn = h(T:), T: = w(S;)) and corresponding cross-sections Sn = an(Tn) of (M, cp) 
that satisfy (c), but neglecting temporarily the requirement of local finiteness 
(5.6-5.8). Finally we modify the system of cross-sections to achieve local finiteness 
without disturbing (c) (5.9-5.11). At this stage it is necessary to modify also the 
system {S;}; this is the reason 5.2 does not assert that any covering system {S;} 
corresponds to a compatible system {Sn }. 

5.3. NOTATION. Throughout this section (M, cp) and (M', cp') denote C' completely 
unstable dynamical systems, and h: M'/cp' -+ M/cp is an order preserving homeo-
morphism. Since we will often need to refer to points or subsets of M / cp and M' / cp' 
that correspond under h, it will be convenient to adopt the notation: 

x' = h-1(x) (x E M/cp); T' = h-1(T) (T ~ M/cp). 

5.4. SEPARATION LEMMA (C. H. DOWKER). Let Y be paracompact. Assume that f is a 
lower, and g is an upper semicontinuous real-valued function on Y such that g(y) < f(y) 
for each y E Y. Then there exists a continuous function h: Y -+ R1 such that g(y) < 
h(y) <f(y)foreachy E Y. 

For a brief proof of this theorem, see [Du, §4.3, Chapter 8]. 

5.5. LEMMA. Letfl2: T1 n T2 -+ R1 be the time map defined by arbitrary (compact) 
sections Sl' S2 of (M, cp) (so 1'; ~ M/cp, a i: 1'; -+ M, Si = ai(1';) (i = 1,2), 
cp(a1(x), f12(x)) = a 2 (x) as above). Let f{2 be the time map defined by arbitrary 
sections S{, S~ of (M', cp') over the corresponding sets T{, T{ in M'/cp'. Suppose there 
is a sequence {xd ~ T1 n T2 with {xd -+ Xo E T1 and limk~O(J12(Xk) = + 00 

(-00). Then lim k .... oo f{2(xD = + 00 (-00 respectively). 



650 S. K. GOEL AND D. A. NEUMANN 

PROOF. We consider the case lim k .... oo f12(x k ) = + 00, the other case being similar. 
We first assert that no limit point of the sequence {a2(x k )} can be in 'IT-l(XO)' For if 
q is such a limit point, then q E J+(p) wherep = al(xO) = 'IT-l(XO) n Sl' so if also 
q E 'IT-l(xo) = y(p), then p E J+(p) contrary to our assumption that q, is com-
pletely unstable. Note that this implies Xo $. T2 • 

We can now verify that {f{2(X~)} has no bounded subsequence. For suppose that 
f ' (x') -+ t' E Rl. then 12 J ' 

and this implies that x~ E T{, hence Xo E T2 , contrary to the result of the preceding 
paragraph. 

Thus the only possibility contrary to the desired conclusion is that {f{2(X~)} has a 
subsequence that tends to -00. Using the compactness of S2' S~ and taking further 
subsequences, we can then obtain a sequence {xj } ~ Tl n T2 with the following 
properties: 

(i) {Xj} -+ xoandf12(x) -+ +00; 
(ii) {xj} -+ x~ andf{2(xj) -+ -00; 
(iii) a2(x) -+ q E S2; and 
(iv) a;(xj) -+ q' E Sr 
Set Yo = 'IT ( q), y~ = 'IT'( q'). Since {xj } converges to Yo in T2 and xj converges to y~ 

in T{, we have h(y~) = Yo' Now (i) and (iii) imply Xo < Yo; (ii) and (iv) imply 
y~ < x~ and since h preserves order this implies Yo < xo' Now choose jo so that 
f12(x) > 0 (allj ~ jo) andf{2(xj) < 0 (allj ~ jo) and consider the sets 

A = {xjlj ~ jo} U {xo} and B = {x)j ~ jo} U {Yo}· 

The sections Sl and S2 determine that A < B. But the sections S{, S~ determine 
B' < A', and h preserves order, so also B < A. This contradicts Proposition 2.2 and 
hence the proof is complete. 

5.6. Let {S:ln E Z +} be a covering system of cross-sections of (M', q,'). Then there is 
a system {Snln E Z+} ofcross-sectionsof(M, q,) with'IT(Sn) = Tn{n E Z+)and 

(c) sgn.t;ix) = Sgnfij(X') (x E Aij , i, j E Z+). 

PROOF. We first note that for each n E Z+, 'IT: 'IT-l(Tn) -+ Tn is the projection of a 
locally trivial fiber bundle over the disk Tn' so there is a continuous lifting an: 
Tn -+ M with 'IT 0 an = 1. 

We now proceed by induction, taking any continuous lifting a l : Tl -+ M of 'IT, and 
setting al(Tl) = Sl' Suppose that we have constructed liftings a/ ~ -+ M, and 
corresponding cross-sections Sj = a/~), forj ::s;; n - 1, satisfying 

(Note that (cn - l) implies that the {S)j::S;; n - I} are pairwise disjoint.) We want to 
construct an: Tn -+ M, Sn = an(T,,), so that 
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Let an: Tn ~ M be an arbitrary lifting of 77, Sn = an(Tn). Of course Sn may not be 
disjoint from the Sj (j ~ n - 1), but at this stage it will be used only for reference. 
We must now modify an' Sn' Inj to satisfy (*); we then relabel, so that the 
appropriately modified lifting, cross-section, and time maps are again denoted by an' 
Sn' and Inj respectively. Note that if (*) is satisfied, then Sn is disjoint from the Sj 
(j ~ n - 1). 

For eachj ~ n - 1, definel:!'I;j: Tn ~ [-00,00] as follows: 

I:i x ) = {!'ooniX) if x E Tn n 1) and I:i X') > 0, 
otherwise; 

I;i x ) = {Inix) if x E Tn n 1) andl:ix') < 0, 
-00 otherwise. 

5.7. For each j, I~ is lower semicontinuous (lsc), and I;j is upper semicontinuous 
(usc). 

We show that I:j is lsc, the verification that I;j is usc being analogous. Thus fix 
a E (-00,00); we must verify that Ga = {x E Tnl/:j(x) > a} is open. Fix Xo EGa. 

We consider separately the cases/~(xo) = 00 andl:/xo) < 00. 
Case 10 (/~{xo) = 00). If Xo is not an interior point of Ga , we can choose a 

sequence {xk } in Tn with {x k } ~ Xo and I:j(xk) ~ a for all k. We assert that 
limk~ool:ix~) = 00. For by definition ofl:!,I:j(x~) is positive; also the possibility 
that {/:ix~)} has a bounded subsequence leads to a contradiction as follows. If 
lim/~ool:ix;) = t', then 

cp'(a~(x~),t')= lim(/>'(a~(xn,l:ixn)= limaj(xn 
I~oo I~oo 

is in Sj, so x~ E 1)' n T: andJ:ix~) = t' > 0; hence/~(xo) = Inixo), contrary to 
our case assumptionl:j(xo) = 00. But if limk~ool:j(xD = 00, then by Lemma 5.5 
also 

lim 1~(Xk) = lim Inixk) = + 00, 
k--+oo k~oo 

and this is impossible since we chose {x d so I~ (x k) ~ a. This contradiction shows 
that Xo is an interior point of Ga in case I:j(x o) = 00. 

Case 20 U:j(x o) < 00). Here the fact that Xo is an interior point of Ga follows 
immediately from the continuity of Inj on its domain Tn n 1). 

5.8. Now delinelunctions un' In: Tn ~ [-00,00] by 
un = min { /:j Ij ~ n - I}; In = max{ I;jlj ~ n - I}. 

Then un is Isc, In is usc, and lor all x E T" we have In(x) < un(x). 

The semicontinuity of un' In follows immediately from 5.7. To check that In < un 
at x E Tn we may as well assume both are finite, hence that un(x) = Inix) and 
In(x) = Ini(x) for some i, j ~ n - 1. Note that thenl:ix') > O,J:i(X') < 0 (by our 
definitions of I:j and I;). Hence /;j(x') = I:j(x') - l:i(X') > O. By induction, 
sgn liix) = sgn lij(X'), so 

un(x) -In(x) = Inix) - Ini(X) = /;ix) > 0, 
as asserted. 
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It is now possible to modify Sn so that (*) is satisfied. By the Separation Lemma 
5.4, there is a continuous function t: Tn -+ Rl with 

In{x) < t{x) < un{x) 

We replace an with an: Tn -+ M defined by 

an{x) = </>(an{x), t{x)), 

set Sn = an(Tn), and definelnj by </>(an(x), In/x)) = a/x). It is easily checked that 
these adjusted time maps satisfy 

Finally we relabel: Sn = Sn' an = an,lnj = In)' fjn = -Inj (j ~ n - 1). This estab-
lishes the induction step, so the proof of 5.6 is complete. 

We now must adjust the system {Snln E Z+) of cross-sections obtained in 5.6 to 
obtain local finiteness. Recall that each Sn is homeomorphic with the closed disk 
D m - 1; we use aSn to denote the boundary of this disk, and Int Sn = Sn \ aSn to 
denote its (relative) interior. We first establish that the system {Sn} admits a 
" shrinking", viz.: 

5.9. SHRINKING LEMMA. There is a system 01 cross-sections {Snln E Z+} such that 
Sn ~ Int Snlor all n E Z+ and M/</> = U{ '1T(Int Sn)ln E Z+}. 

PROOF. We proceed by induction. For each x E aSI there is a j ~ 2 and a 
cross-section S] ~ Int Sj such that x E (lnt S]) . Rl. Since aSI is compact, there is a 
finite set J1 ~ Z + such that 

(aS1)· Rl ~ U (Int Sf) . Rl. 
JEJl 

Choose SI ~ Int SI so that 

SI . Rl ~ (Int SI) . Rl U U (Int Sf) . Rl. 
JEll 

We remark that, for each j E J1, when we later construct Sj' we will impose the 
restriction S] ~ Sj. 

Suppose now that we have constructed cross-sections SI"" ,Sn with Sk ~ Int Sk 
(k ~ n), finite sets Jk ~ {I E Z+II > k} (k ~ n), and cross-sections sf (j E Jk, 
k ~ n) satisfying 

(a) for each k ~ n, Sk . Rl ~ U jE;k(Int S) . Rl U U jEJk (Int Sf) . Rl and 
(b) for any I ~ j ~ n, ifj E J1, then Sf ~ Sj. 
Now consider Sn+l' Choose a finite set I n+1 ~ {I E Z+II > n + I} and sections 

S/+1 ~ Int Sj for eachj E I n+1 so that 

(asn+1) . Rl ~ U (Int Sj) . Rl U U (Int S/+I) . Rl. 

(We may see that this is possible as follows. Fix x E asn + 1• If x E (Int S) . Rl for 
somej> n + 1, choose S/+1 with x E (Int S/+I). Rl and S/+l ~ Int Sj. If x is in 
no (Int S) . R1 for j > n + 1, then choose k ~ n with x E (Int Sk) . Rl. Now by (a) 
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and (b), we have 

x E (Int Sk) . RI ~ U {Int SJ . RI U U (Int Sf) . RI 
j..,k 

so X E U j..,n(lnt S) . W.) Now choose Sn+1 ~ Int Sn+1 so that (a) and (b) hold with 
n + 1 with n + 1 in place of n. 

By induction we obtain a system {Snln E Z+} with Sn ~ Int Sn for all n E Z+, 
and such that (a) and (b) hold for all n. We must check that any x E M is contained 
in some (Int Sn) . RI. Choose n with x E (Int Sn) . RI. But 

and by (b) S/ ~ Sj for any} E In. Therefore, if m = max In' we have x E 
- I . U j..,m(lnt S) . R as deSIred. 

5.10. REMARK. We emphasize that we have not assumed that Sn is locally finite in 
5.9. This accounts for the fact that the preceding proof is more complicated than the 
usual proof of the "shrinking theorem" for point-finite covers of normal spaces; 
compare [Du, Theorem 6.1]. 

5.11. CONSTRUCTION OF COMPATIBLE COVERING SYSTEMS. We can now complete 
the proof of Proposition 5.2. Again {S:} denotes a given covering system of 
cross-sections of (M', cp'), and {Sn} is the system of cross-sections constructed in 5.6. 
Let {Sn} be the shrinking of {Sn} as in 5.9. Choose a sequence {e~} of positive reals 
so that limn~ 00 e~ = 0 and such that {S: . [-e~, e~]} is a pairwise disjoint collection. 
We construct inductively a (locally finite) covering system {R i} of (M, cp) so that 
for each i E Z+, there exist n E Z+ and ti E [e~, e~l with Ri ~ Sn . ti. 

Let QI = RI = SI· Suppose that we have determined integers 1 = m l < m 2 < 
... < mn and cross-sections Qi == Dm-I for each i ~ mn such that 

(a) foreachk ~ n andi E Ik = {m k- I + 1, ... ,mk}, Qi ~ Sk; 
(b) for each k ~ n, U jd(lnt Sj) . W Ui..,mk (Int Qi) . W; and 
(c) for each k ~ n, i ~ m k- I and} E Ik we have either 

Here Q~ denotes the subset of Qi that corresponds to the closed disk of radius 
1 - 11k under the homeomorphisms Qi == D m - I , and gij(x) denotes the time along 
the cp-orbit y(x) from Qi to Qj. Note that if i E Ik and} E I" then 

(d) 

This applies even if k = I, in which case both sides are zero; i.e. for i, } Elk' Qi and 
Qj may not be disjoint (they will be made disjoint after the inductive construction of 
the Qi is completed; the resulting sections will be the R;). 
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Now consider Sn+i. Let 0 = Sn+i n U;",m (Int Q;) . Ri. We assert that for each 
~ n 

X E Sn+i \ 0 there is an (m - 1) disk Qx ~ Sn+i with x E Int Qx, and such that 
whenever Qx n Q;+i . Ri "* 0 for i :,.;; m n, we have 

!g;(y)!>n+1 forallyEQxn(Q;+l·Ri), 

where g;(y) denotes the time along the q,..orbit y(y) from Sn+i to Q;. To see this, fix 
x E Sn+i \ 0 and i:,.;; m n • Let A; = Sn+i n (Q; . Ri), the domain of g;. If x E 
A; \A;, then by 5.5 there is a neighborhood N; in Sn+i of x such that 

!g;(y)! > n + 1 for ally E N; n A;. 

If x$. A;, then let N; be a neighborhood in Sn+i of x that does not intersect 
Sn+i n Q;+i . Ri ~ A;. Since x $. 0, the only remaining possibility is that x E Sn+i 
n (aQ;) . Rl, and again some neighborhood N; of x in Sn+i misses Sn+i n Q;+i . Ri. 
Hence we may take Qx to be an (m - 1) disk contained in n;..;mn N;. 

Now the (relative) interiors of finitely many of these Qx cover Sn+i \ 0; we label 
these as Qm+i' Qm+2, ... ,Qm . By our construction, Qi,Q2, ... ,Qm now n n n+l n+l 

satisfy (a)-(c) with (n + 1) in place of n. 
Thus we obtain by induction a family Q; of cross-sections of (M, CP), satisfying 

(a)-(c) for all n. It follows from (b) that M/CP = U;EZ+ 'IT(lnt Q;). We now check 
that {Q;} is locally finite. Fix x E M, choose i E Z+ with x E (lnt Q;) . Ri and 
choose NEZ + so large that i < m N and x is an interior point of the flow box 
B = Q;V . [-N, N]. We assert that only finitely many of the Qj meet B. In fact if 
j> mN (so Qj was constructed at some stage n > N of our induction) then by (c) 
either Qj misses Q;V . Ri or Ig;/y)1 > N for all y E Qj n Q;V. Ri. In either case 
Q j n B = 0. Also note that from our construction, for arbitrary i Elk and j E I, 
we have 

We now define R; by translating the Q; along the flow to obtain disjointness; this 
is possible as follows. Since {Q;} is locally finite, we may choose a positive sequence 
{En} with En:";; E~, limn .... 00 En = 0, and so that the sets (UiElk Q;). [-Ek' Ed for 
k E Z+ are pairwise disjoint. Now for each k E Z+ choose distinct I; E [-Ek' Ed for 
i E Ik and set Ri = Q;. I;. Then {Rili E Z+} is a covering system for (M, CP). 

Finally we define a covering system {R~li E Z +} for (M', CP/) by 

R~ = a~(h-i'lT(RJ). Ii 

for each k E Z + and i Elk. It is easily verified that {Ri} and {R~} are compatible. 

6. Complete systems of cross-sections. We will need one further refinement of our 
notion of covering systems of cross-sections in the proof of the reparametrization 
theorem below. 

6.1. DEFINITIONS. Let (M, CP) be a completely unstable dynamical system and let 
{ Sn I n E Z +} be a covering system of cross-sections. We say that {Sn} is complete if 
for each x E M,x· (0,00) meets some Int Sj and x . (-00,0) meets some Int Sk. 

If {Sn} and {R n} are systems of cross-sections for (M, CP) and {Sn} ~ {R n}, we 
say {Rn} augments {Sn}. 
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6.2. LEMMA. Let (M, cp) and (M', cp') be C' completely unstable dynamical systems 
and let h: M'/cp' --+ M/cp be an order preserving homeomorphism. If {Snln E Z+} and 
{ S:I n E Z +} are compatible covering systems of cross-sections for (M, cp) and (M', cp') 
respectively, then they can be augmented to compatible complete systems. 

PROOF. We proceed by induction. Assume that we have determined integers 
k1 < k2 < ... < km - 1, positive numbers t1 < t2 < ... < tm - 1, and cross-sections 
{Rjl} ~ km-d, {Ril} ~ km-d satisfying the following (wherefij,fii are as above, 
gii 7T(SJ n 7T(Rj) --+ R1 denotes the time from Si and R j , to g;j is defined analo-
gously): 

(a) At each stage I ~ m - 1, tl > I is chosen so that for each i ~ I and} E Z+ we 
have 

Ik(x)l> tl implies l/;i(h-1x)1 > I; 

for each i < I and} ~ k l _ 1 we have 

Igi/X)I> t, implies Ig:/h-1x)1 > I. 

(b) At each stage I ~ m - 1, for any p E Ui.;;ISi there exist integers}, k E 

(k l - 1, k l ] and times rp > t l , sp < -t l with P . rp E R j , P . sp E R k ; analogously for 
the Ri,) = k l - 1 + 1, ... ,k l · 

(c) At each stage I ~ m - 1, {Snln E Z+} U {R)} ~ kd is compatible with 
{S:ln E Z+} U {Ril} ~ kd. 

We now proceed to extend the augmentations of {Si} and {Sn to stage m. For 
x E M/cp let x' denoteh-1(x) E M'/cp'; set 

C,;,= [.U S/] ·[-m,m]. 
l~m 

(1) There exists tm > max(tm-1' m) such that for each i ~ m and} E Z+ 

and for each i ~ m and} ~ k m - 1 

For if no such tm exists, then there is a sequence {x k } ~ Ui.;;m 7T(SJ and a sequence 
Ud ~ Z+ such that l/;j.(xk)1 --+ + 00 but l/;ik(X~)1 ~ m. Without loss of generality 
we may assume {xd ~ 7T(Sl)' that X k --+ x E 7T(Sl)' and that}k =} (fixed) for all 
k E Z +. The last of these requirements can be met because {S;} is locally finite so 
only finitely many of the S; meet the compact set C,;,. But then 

If1/xk)I--+ + 00 while If{Ax~)1 ~ m, 
contrary to Lemma 5.5. The assertion on the gij may be proved similarly. 

Now choose t m as in (1) above and define 

Cm = [U Si] . [ -t m' t m]· 
l~m 
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For a disk Dp (~Dm-l) in S;, let D; denote the corresponding disk (7T,-lh- l7T(Dp) 
n S/) in S;'; analogously for a pointp E S; letp' = (7T'-lh-~(p) n S/). Define 

W = ( U S;) U ( . U R j ) U Cm 
1~1 J:s;;;.k m - 1 

and 

W' = ( U S;') U (. U Rj) U C~. 
1~1 J~km-l 

(2) For eachp E Sl' there exists a disk neighborhood Dp (~ D m - l ) ofp in Sl' and 
there are times rp > tm, r; > m such that 

(ex)Dp'rpn W= 0; 
(P) D; . r; n W' = 0; 
(y)Dp' rp is related to {S;li ~ I} U {R)j";; km-d exactlyasD;· r; is related to 

{S;'li ~ I} U {Rjlj..;; km-d; viz., the cf> orbit y(p) meets S;(R j ) ahead of Dp' rp if 
and only if the corresponding cf>' orbit 7T-lh-~(p) meets S;' (Rj respectively) ahead 
of D; . r;. 

We may see this as follows. For p E Sl first choose rp > tm so thatp· rp $. W. By 
our choice of tm, we can then choose r; > m so thatp' . r; $. W' andp' . r; is related 
to the S;' (Rj) just as p . rp is related to the S; (R). It follows that there are 
neighborhoods Up ~ M, U; ~ M' such that 

(i) p . rp E ~, ~ n W = 0; 
(ii)p" r' E U' U' n W' = 0' and p P' P , 
(iii) U; is related to the S;' (Rj) as Up is related to the S; (R). 
Finally choose a disk neighborhood Dp (~ D m -1) of p so small that Dp . rp ~ ~ 

and D; . r; ~ U;; the resulting disks satisfy all the assertions of (2). 
Since Sl is compact, finitely many Dp cover it, say those withp = Pl"" ,Ph' Note 

that we may assume each of {Dpi . rpili ..;; h} and {D;i' r;,Ii ..;; h} is a disjoint 
collection, by adjusting slightly if necessary the times rpi' r;,. Analogously we can 
obtain disjoint collections {Ep,' sp,lh < i..;; k} ({E;,' s;,lh < i..;; k}) of disks be-
low Cm (C~ respectively), satisfying (ex )-( y) of (2). Here we may assume each 
SPi < -tm' s;, < -m, and that {Ep,lh < i..;; k} covers Sl' We now relabel all the 
disks Dp,' rp,' Ep,' sp, by Rkm_l+l, ... ,Rk;" (so k',., = k m- l + k); label the corre-
sponding disks in M' by R~m_1 +1"" ,R~;". At this point the R;' may fail to be 
related to each other in the same way the R j (km- l < j ..;; k',.,) are, but the argument 
of 5.6-5.8 shows that we can adjust the R'/ to obtain appropriately related 
cross-sections Rj (km- l <j..;; k',.,), such that the Rj also miss C~. Observe that, by 
our construction, the collections {S;li ~ I} U {R)j";; k',.,} and {S;'Ii ~ I} U {Rjlj 
..;; k',.,} satisfy the required conclusion (a)-(c) of our inductive construction, except 
that in (b) we have only Sl in place of U;",m S;. 

We must now repeat the argument from (2) on, replacing Sl with S2"" ,Sf in 
succession, at each stage augmenting W and W' by adding the sections R j' Rj 
constructed at the preceding stage. If we denote by R;, R; (i = k m - l + 1, ... ,km ) all 
the new sections produced in this way, then the resulting systems satisfy (a)-(c) with 
m in place of m - 1, as is required. 



COMPLETELY UNSTABLE DYNAMICAL SYSTEMS 657 

Thus we obtain by induction augmented systems {Sjli E Z+} U {R)j E Z+} in 
M and {S/Ii E Z +} U {RjU E Z +} in M'. These are the required complete systems. 
Note that compatibility follows directly from the construction; also the augmented 
systems remain locally finite, since in fact each of the compact sets em (e,;.) meets 
only finitely many of the R j (Rj respectively). Hence only completeness remains to 
be checked. But suppose there is some q E M such that q . (0, 00) does not meet any 
Sj (i E Z+) (the argument is similar if q' (-00,0) does not hit any Sj)' Let 
t E (-00,0] be such that p = q' t E SI for some IE Z+. Let Rk be a cross-section 
added at the mth stage of our construction, where m is chosen so m ~ I, tm > -t, 
and p . (0,00) n Rk 01= 0. Since Rk is added at stage m, we must have glk(P) > tm 
> -to Thus if we set t' = glk(P) + t, then t' E (0,00) and in fact 

q' t' = (q. t)· glk(P) = p. glk(P) E R k , 

as desired. This completes the proof of 6.2. 
6.3. REMARK. We remark that the complete system {Sjli E Z +} U {R) for each 

i E Z+, k l _ 1 <j ~ kd of cross-sections obtained above can be constructed so that 
it admits a shrinking that is also complete. In fact when we construct the disks 
Dp . rp in 6.2, we can actually construct disks Dp . rp and Dp . rp with Dp ~ Int Dp 
and such that (for those added at the mth stage) finitely many Int Dp cover Uj<;m Sj. 
Thus, if we denote the cross-sections Dp' rp as R j , then from Lemma 5.9, {Sjli E 

Z+} U {R) for each i E Z+, k j _ 1 <j ~ k j } is the desired shrinking that is also 
complete. 

7. Reparametrization of completely unstable flows. 
7.1. DEFINITION. If If; is a continuous flow on the m-manifold M, we say that the 

flow ~ is a reparametrization of If; if the identity mapping 1: M -+ M is a topological 
equivalence of If; with ~. 

We remark that we admit the possibility that ~ is only CO even though If; may be 
smooth. In any case a third system (M', If;') is topologically equivalent to (M, If;) if 
and only if it is equivalent to (M, ~). 

The object of the present section is to prove the following reparametrization 
theorem. It is the main step in the proof of the classification theorem. The notation 
and terminology is that of §§4-6. 

7.2. REPARAMETRIZATION THEOREM. Suppose (M, </», (M', </>') are completely unsta-
ble e r (r ~ 1) dynamical systems, h: M' /</>' -+ M/</> is an order preserving homeomor-
phism, and {Sn}' {S:} are compatible complete systems of cross-sections for (M, </> ), 
(M', </>') respectively. Then there is a reparametrization ;j, of </>, such that 

iij(x) = /;j(h-1x) (all i, j E Z+, X E 'IT(Sj) n'lT(Sj))' 

where lj denotes the time from Sj to Sj relative to ;j" and { Sn} is a shrinking of { Sn }. 

7.3. EXAMPLE. Again the proof is lengthy, so we attempt to simplify the presenta-
tion by treating one of the main steps separately, namely the construction of a 
reparametrization of </> that correctly adjusts the time map for a single pair of 
cross-sections. We motivate some of the details of the construction with a simple 
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example. Let M = ([-1,1] X RI) \ {a, b}, where a = (0,1), b = (0,3). Let <p be the 
flow on M generated by the differential equations x = 0, y = r(x, y), where r: 
[-1,1] X RI -+ [0, 1] is a smooth function that vanishes exactly on {a, b}. Let T, S be 
cross-sections of <p given by T = [-1,1] X {O}, S = [-1,1] X {4}, and letf: T\ {O} 
-+ (0,00) denote the time from T to S relative to <p (see Figure 5). Set x = (x,O) E T 
for x E [-1,1]. Given a continuous function 1': T\ {O} -+ (0, (0) such that 
lim x--> 0 f'(x) = 00, we want to construct a reparametrization 4> of <p that realizes I' as 
the adjusted time from T to S. We define 4> on T· RI = {<P(x, t)lx = (x,O) E T, 
t E RI} by 

(*) 4>t=P-\p, 
where P is a (fibrewise) homeomorphism of T· RI onto T X RI that maps each orbit 
segment x . [0, f(x)] onto the vertical segment {x} X [0', f(x)], and Tt denotes the 
translation defined by Tt(X, s) = (x, s + t) (x E T, s, t E RI). We wish to extend 4> 
to all of M by requiring 4> = <p off T· RI. Difficulties arise because T· RI is not 
closed in M. For example, while P must map each orbit segment x . [0, f(x)] onto 
{x} X [0, f'(x)], if p-ITtP is to be extendable, then p must map segments of the form 
(x, 4) . [-k, k] onto segments whose length more and more closely approximates 2k 
as x approaches 0. Analogously, orbit segments which are close to a segment 
c· [a,,8] (c = (0,2), see Figure 5) must have a "4>-length" close to,8 - a (i.e., close 
to their "<p-Iength"). In the latter case we may insure this by placing an auxiliary 
cross-section R through c, and requiring that p map segments of the form r . 
[-/(r),/(r)] for r = (x,2) E R "isometrically" onto subintervals of {x} X [0, f'(x)] 
(where r . [-l(r), l(r)] is parametrized by <p and {x} X [O,f'(x)] is parametrized by 
the vertical coordinate). Here I: R -+ (0, (0) must be chosen so that limr-->c/(r) = 00, 
but with I(r) small enough that an isometric mapping of this segment of x . [0, f(x)] 
into {x} X [O,f'(x)] is possible. If similar constraints are placed on the restrictions 
of p to orbit segments through s E S, t E T, the flow <p defined by (*) on T . RI will 
have the desired extension to all of M. 

The details of this informal description are carried out in the general case in the 
proof of Lemma 7.4. 

7.4. LEMMA (ADJUSTMENT OF A SINGLE TIME MAP). Suppose {Sn}, {S~} are 
compatible complete systems of cross-sections for (M, <P), (M', <P'), relative to the order 
preserving homeomorphism h: M' / <p' -+ M / <p. Let {Sn} be a shrinking of {S,,}. Then 
for fixed n, j E Z + there is a reparametrization 4> of <p such that the time inj from Sn to 
Sj (with respect to 4> ) satisfies 

PROOF. We first establish our notation. For x E Sn let x denote '/T(x) E M/<P. Set 
A = Sj· RI n Sn' B = Sj. RI n Sn' and define mappingsf, 1': A -+ RI by 

Let A+= {x E Alf(x) > O} and A-= {x E Alf(x) < O}, so A = A+U A-; B = 
B+U B- analogously. 
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We will construct a homeomorphism p: Sn . RI ~ Sn X RI that maps each orbit 
x . RI (by an orientation preserving homeomorphism) onto the vertical fiber {x} X 
Rl, taking x E Sn to (x,O) E Sn X RI, taking X· [0, f(x)] onto {x} X [0, f'(x)] if 
x E B+, and taking X· [f(x),O] onto {x} X [f'(x), O] if x E B-. We then define;(,1 
for each t E RI by 

P E Sn· R1, 

p E M\Sn· Rl, 

where'T1: Sn . RI ~ Sn X RI is (the vertical translation by t) defined by 'T1(x . s) = 

(x, t + s) (x E Sn; s, t E RI). We will need to impose further restrictions on p to 
insure that the mapping </> defined by (*) is continuous at points of the boundary of 
Sn . RI in M, but if p satisfies the preceding conditions, then it is easy to check that 
the restriction of </> to Sn . RI is a reparametrization of </> that satisfies the conclusion 
of 7.4. 

We now proceed with the construction of p. We consider separately the construc-
tion on Sn . [0, 00) and on Sn . (-00,0], treating the case Sn . [0,00) in detail. Let X+ 
denote the closure of A + in Sn' and let K+ = X+\ A +. For each m ~ n define Urn by 

Urn = {x E A+/f(x),f'(x) > 4(m + 1)2 + 2(m + I)}; 
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Um U K+ is a neighborhood of K+ in .;[+. For otherwise there is a sequence {xd in 
A + with {x d converging to x E K+ and {f (x k)} bounded. By taking subsequences 
we may assume there is a sequence {xd in A +, with {xd ~ x E K+, {f(x k )} ~ t 
E [0,00) and (since X k • f(x k ) is in the compact cross-section Sj for each k) that 
{x k • f(x k )} ~ X· t E Sj. But thenf(x) = t, and in fact t > ° (since Sj n Sn = 0), 
so X E A + contrary to our initial assumption. 

For each m ;;;. n define Km = (SI U ... U Sm) . [-m, m]; note that each Km is 
compact and M = Um;>.n Km. For each x E A + define 

Cx = irnin{f(x),f'(x)}; 

note that Cx is a continuous function of x E A +. We now define P "locally" as 
follows: for each p E A+ choose Np ~ A + a closed (m - 1) disk that is a neighbor-
hood of p in A +, and choose a homeomorphism Pp: Np · [0, 00) ~ Np X [0,00), 
satisfying the following: 

(a) If Np n Urn =F- 0, thenNp ~ Urn-I. 
(b) For each x E Np' Pp maps x . [0,00) onto {x} X [0,00). 
(c) For each x E Np' Pp maps x . [0, cx] isometrically onto {x} X [0, cx], and 

x·[f(x)-cx'oo) isometrically onto {x} X [f'(x)-cx'oo) (here x·[O,oo) is 
parametrized by cp, and {x} X [0, 00) is parametrized by the vertical coordinate). 

(d) If Np ~ Urn-I' then on each x . [0,00), Pp maps each component of Km n x . 
[0, f(x)] isometrically into {x} X [0, f'(x)]. 

That such a choice is possible may be seen as follows. 
We first choose the Np satisfying (a). If Np ~ Um - I and x E Np' then the length of 

X· [cx' f(x) - cx] is at least Y(x) > 2m 2 + m; {x} X [cx, f'ex) - cx] has length 
at least tf'(x) > 2m 2 + m. The number of components of Km n x . [ex, f(x) - cJ 
is at most m, so their combined length cannot exceed 2m 2• Thus there is a 
homeomorphism of X· [0, f(x)] onto {x} X [0, f'(x)] that satisfies the restrictions 
(b)-(d). This homeomorphism can be chosen to vary continuously as x varies over 
Np because f(x), f'(x), Cx' and the intersections S; n x . [0, f(x)] (i = 1, ... ,m) all 
vary continuously with x; for example the restriction of P to each x . [0, 00) can be 
taken to be a piecewise linear homeomorphism "canonically" constructed from this 
information. The details are straightforward but tedious, and hence we omit them. 

Now let {A"J aE ..... be a locally finite partition of unity subordinate to the cover 
{Int Nplp E Int A +} of Int A +. For each a E.9Jf choose pea) with support(Aa) ~ 
Int Np(a) and define 

PI = L AaPp(a)· 
aE.JJJ' 

Then PI is a fibrewise homeomorphism of Int A + . [0, 00) onto Int A + X [0, 00) that 
satisfies the following for each x E Int A +: 

(e) x . [0, cx] is mapped isometrically onto {x} X [0, cx]; 
(f) X· [f(x) - cx' 00) is mapped isometrically onto {x} X [f'(x) - cx' 00); 
(g) If x E Um , then each component of Km n x . [0,00) is mapped isometrically 

into {x} X [0,00). 
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In fact each Pp satisfies (e) and (f) (by (c) above), hence any convex combination 
does also. If x E Um and Aa(X) -=1= 0, then Aa is supported on some Np ~ Um- I (by 
(a) above), so Pp(a) satisfies (g) (by (d) above). Thus PI satisfies (g) also. 

We now extend Plover all of Sn X [0, 00) in several steps. We first extend to 
A + ·[0,00). Let 8A + denote A +\ Int A +; note that 8A += A +() aSj • RI. Then A +\ B+ 
is a neighborhood in A + of 8A +. Let uI : A + --+ [0,1] be a continuous (Urysohn) 
function satisfying uI(x) = ° for x E 8A + and uI(x) = 1 for x E B+. Let Po: 
Sn· [0,00) --+ Sn X [0,00) denote the homeomorphism defined by Po(x . t) = (x, t). 
Define P2: A + . [0, 00) --+ A + X [0, 00) by 

P2 = UIPI + (1 - uI)Po· 
Then P2 satisfies (f) above for x E B+, satisfies (e) and (g) for x E A +, and agrees 
with Po on 8A + . [0, 00). 

We can now extend P2 to P3: X + . [0, 00) --+ X + X [0, 00) by taking P3 = Po on 
K+ . [0, 00); viz., 

{ 
P2 (x . t), X E A + , 

P3 (x . t) = () - + Po x . t, X E A +\ A + = K . 

Again P3 satisfies (f) on B +, satisfies ( e) and (g) on X +, and P3 = Po on ( 8A + U K+) . 
[0,00). 

We may check that P3 is continuous at K+· [0, 00) as follows. Suppose {x d is a 
sequence in A + that converges to x E K+, and {t n} is a sequence in (0, 00) that 
converges to t E [0,00). Choose mE Z+ so that t I, t2, ... ,t E [0, m]. Then there is a 
ko E Z+ such that x k E Um for k ~ ko' hence tk E [0, cx ) for k ~ k o. Since P3 maps 
x k · [0, cx ) (k ~ k o) by an isometry it follows that P3(Xk . tk) = (Xk' tk ), which 
converges to (x, t) = P3(X . t) as k --+ 00 as desired. 

Note that the (topological) boundary X+\ Int A + of A + in Sn is just (A +() aSj . 
RI) U K+. Thus P3 agrees with Po on the boundary of A +, and we can extend to P4: 
Sn . [0,00) --+ Sn X [0,00) by taking P4 = Po on all of (Sn \ A +) . [0,00). We make 
one final adjustment to insure that P = Po on aSn . [0,00). Let u2: Sn --+ [0,1] be a 
continuous function satisfying u2(x) = ° for x E aSn and u2(x) = 1 for x E Sn. 
Definep by 

P = U2P4 + (1 - U2)PO· 
Then p: Sn . [0, 00) --+ Sn X [0, 00) is a fiberwise homeomorphism that satisfies (f) for 
x E Sn () B+, satisfies (e) and (g) for all x E Sn and agrees with Po over aSn U K+. 
We extend P to Sn· (-00,0] by an analogous construction. 

We now define ~ by (*) and check that ~ is the desired reparametrization of cp. 
Because P satisfies (f) (and the analogous condition when f(x) is negative) for 
x E Sn () Sj. R\ we see that P maps x . [0, f(x)] onto {x} X [0, f'(x)] for x E Sn () 
B+, and maps X· [f(x), O] onto {x} X [f'(x), O] for x E Sn () B-. Thus 

in/x) = f:j(h-Ix), x E 'IT(Sn) () 'IT{SJ. 
It remains to check the continuity of ~ at points of the boundary of Sn . RI in M. At 
points of aSn . R- there is no difficulty, since ;p is clearly continuous on Sn . R\ and 
~ = cp on aSn . RI. Hence we consider a sequence { P k} in Sn . RI that converges to a 
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pointp fi S" . R\ and a sequence {td of real numbers with {td ~ t. We show that 
{;P(Pk, tk)} ~ ;P(p, t). We may assume that Pk E S" . [0,00), say Pk = CP(Xk' Sk) 
with Xk E S" and Sk > o. Since P fi S" . Rl we must have that {Sk} ~ 00 (cf. the 
proof of Lemma 5.5). It follows that, for an arbitrary convergent subsequence {xj } 

of {xd, say {Xj} ~ xES", we may assume x E K+. Now fix i E Z+ with 
P E Int Sj . Rl; then ultimately Pj E Sj . R\ and if m is sufficiently large then there is 
a }o E Z+ such that all the Pi' ;P(Pj' tj) for } ~ }o, as well as p, ;P(p, t) lie in 
Sj[-m, m] ~ Km. Since {Xj} ~ x E K+ we may assume}o chosen so large that 
x j E Um for} ~ }o. But then, as p satisfies (g), we have that 

;P(Pj' tJ = cp(Pj' tj) ~ cp(p, t) = ;P(p, t). 
As the convergent subsequence {Xj} was arbitrary, it follows that ;P(Pk' tk) ~ 
;P(p, t) for the full sequence, as required. This completes the proof of Lemma 7.4. 

7.5. NOTATION. In the following proof of the reparametrization theorem we will 
use Lemma 7.4 repeatedly; each time we do we must give up a neighborhood of the 
boundary of certain cross-sections, so we first establish an infinite sequence of 
shrinkings. Let {Sn} denote any fixed shrinking of {S,,}. 

For each n E Z+, choose a sequence {S:lk E Z+} of closed (m - 1) disks in 
Int S,,' with each S: ~ Int S:-\ and n{S:lk E Z+} = S". Then for each fixed k, 
{S:I E Z+} is a shrinking of {S:-lln E Z+}. 

7.6. PROOF OF REPARAMETRIZATION THEOREM. We proceed by induction, with 
Lemma 7.4 providing the basis. To avoid excessive notation, each time we reparame-
trize we relabel so that the adjusted time maps are again denoted {/;jli,} E Z+}. 
N ate that {S,,} remains a complete system compatible with {S:}. 

Thus assume that we have constructed reparametrizations CPl'.·· ,CP,,-l satisfying 
the following restrictions: 

(a) For each k ~ n - 1 we have /;/x) = /;j(h-lx) for all i,} ~ k and all 
x E '1T(st) n'1T(s/); 

(b) For each k ~ n - 1, CPk agrees with CPk-l on the complement of S;-l . W. 
Also, if x E S;-l and ik/X) > 0 for some} < k and x E Sf . R\ then the time 
parametrization induced by CPk on Y . [0,00), where y = y(x) n Sf, is the same as 
the time parametrization induced by CPk-l. Analogously for x E S;-l withik/x) < 0 
for some} < k. 

(The latter restriction will be needed to prove that the sequence { cp,,} of reparame-
trizations that we construct does converge to a reparametrization of cp.) 

We now construct CPn so that (a) and (b) are satisfied with n in place of n - 1. Here 
cP" will be defined as in 7.4: we define a fiberwise homeomorphism p: S;-l . W ~ 
S,,-l x'Rl and set n 

P E S"n-l. R\ 
P E M\ Sn,,-l . Rl. 

We treat the construction of p on S,," -1 . [0, 00) in detail, the construction on 
S"n-l . (-00,0] being analogous. Set T = S;-\ and let (): T· Rl ~ T denote the 
natural projection. For each) ~ n define open sets OJ, Qj, Rj ~ Sj so that 

sn = P' c 0' c 0' c Q' c Q-' c R' = Int S,,-l 
} }-}-}-}-}-} } 
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(where the closure and interior are taken with respect to S). For each' j set 
A/= {x E Tl/n/x) > OJ, and define (cf. Figure 6): 

lj= O(Pj) nA/, OJ=O(Oj)nA/, 

Qj = O(Qj) nA/, Rj = O(Rj) nAt 
Note that OJ, Q j' R j are all open in T. 

Let Po: T· [0, 00) ~ T X [0,00) denote the homeomorphism defined by Po(x . t) 
= (x, t). For j = 1,2, ... ,n - 1 we use Lemma 7.4 (and its proof) to obtain 
fiberwise homeomorphisms Pj of T . [0, 00) onto T X [0, 00) satisfying the following: 

(al) Pj adjustslnj tol:j over OJ n Snn; 
(bl) Pj = Po over T\ Qj; 
(c1) Pj = Po over a neighborhood of aT; 
(dl) Pj maps x . [fn/X)' 00) by an isometry for each x E A/; and 
(el) the reparametrization defined by p~/T'Pj (t ~ 0) on T . [0, 00) extends continu-

ously by (<I>n-l), on (M\ T)· [0, 00). 
Define Pn = Po· Since we are constructing a fiberwise homeomorphism P that 

simultaneously adjusts (n - 1) maps In; (1 ~ i ~ n - 1), we may assume by induc-
tion that we can construct such homeomorphisms that simultaneously adjust any 
(n - 2) of the In;. Thus suppose that we have fiberwise homeomorphisms Pn+/ 
T . [0, 00) ~ T X [0, 00) for j = 1, ... , n - 1, satisfying the following: 

(a2) Pn+j adjusts each In; (i "* j, i ~ n - 1) to I:; on P; n Snn; 
(b2) Pn+j = Po over T\ U;"jQ;; 
(c2) Pn+j = Po over a neighborhood of aT; 
(d2) for each i "* j, i ~ n - 1, Pn+j maps x . [fn;(x), 00) by an isometry, for each 

x E Pi; and 
(e2) the reparametrization defined by P~~jT,Pn+j (t ~ 0) on T· [0,00) extends 

continuously by (<I>n-l), on (M\ T) . [0, 00). 

FIGURE 6 
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We obtain the desired homeomorphism by piecing togetherpl' .. ' ,P2n-1 by means 
of a partition of unity. 

Define Q = Uj.;;n-IQi' and define u: Q ~ RI by u(x) = min{fn/x)lln/x) > 0, 
}::;;;; n - I}. Set 

K+ = {x E T Ifor some sequence {x d in Q, {x d ~ x, { u ( X k)} ~ oo}. 
Then K+ is closed in T, and has the following property: If x E K+ and f3 > 0, then 
there is a neighborhood N of x in T, such that In/Y) > f3 for all yEN n Pj. We 
first define P over T\ K+. For each} = 1, ... ,n - 1 define 

Jj = {x E 0jlifln;(x) <Injforsomei::;;;; n - 1, then x ft. Pi}, 

Vn +j = (R j \pJ n(T\K+), 

and for} = n define 

Vn = (T\ K+) \(1\ u ... U Pn- I ) 

(where the bar denotes the closure in T\ K+). Then each Jj (j = 1, ... ,2n - 1) is 
open in T\ K+, and in fact {JjIJ::;;;; 2n - I} covers T\ K+. To see this fix 
x E T\K+. If x is in some Pi' choose} so In/x) = min{fn;(x)lx E Pi}; then 
x E Jj. Thus we may assume x is in no Pi. Also we may as well assume x ft. Vn. But 
then x E Pj for some} ::;;;; n - 1, so X E Pj \ lj, and there is a sequence {x k} in Q 
with {xk } ~ x, and In/Xk) ~ 00. Since x ft. K+ this implies that x E R; for some 
i '* }. But then x E Vn+;. 

Now let {A)} ::;;;; 2n - I} be a partition of unity subordinate to this open cover of 
T \ K+, and define 

P = L AjP}" 
j.;;2n-! 

We verify that P has all the desired properties. 
(i) For} ::;;;; n - 1, P adjusts Inj to I:j on Pj n S;. Fix x E lj n S;. If A;(X) '* 0 for 

i::;;;; n - 1, then x E V;. Since also x E lj we must have In/X) ~ In;(x) (with 
equality only if i = i), and therefore P; does adjust Inj to I:j (by (al) it maps 
x . In;(x) to (x, I:;(h-Ix)), and maps X· [fn;(x), 00) by an isometry, while/ij(x) = 
/;j(h-Ix) by induction). Since x E Pj we must have An(X) = 0 (support (An) n Pj = 
0). Finally suppose An+;(X) '* 0 for i.,;; n - 1. Then x E v,,+;. Again i '*} since 
Vn+j n Pj = 0. But then by (a2) Pn+; does adjustlnj to I:j on the orbit of x. Thus P 
is a convex combination of homeomorphisms each adjustinglnj to I:j over {x}. 

(ii) The extension 01 P to T· [0,00) by Po over K+ is a homeomorphism. For if 
x E K+, then x is in no Q;, so (by (bl) and (b2)) all of the Pj agree with Po on the 
orbit of x. Assertion (ii) now follows from the continuity of the Pj' 

For the remainder of the proof P denotes the extended homeomorphism. 
(iii) Over points 01 T\ U;<n-I R; and on a neighborhood 01 aT, P agrees with Po. 

This follows from (cl), (c2), and the fact that, for i .,;; n - 1 support(A) ~ 0; ~ R;, 
support(An+J ~ R;. 

(iv) For} .,;; n - 1, il x E lj then P maps x . [fn/X)' 00) by an isometry. The 
argument here is essentially as in (i) above using (dl) and (d2). 
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(v) The reparametrization defined by p-1'TtP (t ;;:. 0) on T· [0,00) extends continu-
ously by (CPn -1) ton (M \ T) . [0, 00). This follows immediately from (e1) and (e2). 

Note first that (i)-(v) justify our use of induction to obtain Pn+ 1' ... 'P2n-l above. 
We now assume that P has been constructed analogously to T . (- 00, 0], and define 
CPn by 

pET. Rl, 

P E (M\ T) . Rl. 

It follows from (i) that (a) is satisfied. It follows from (iU)-(v) that (b) is satisfied. 
Thus our induction is complete, and CPn is the desire reparametrization. 

Finally we must show that the sequence { CPn} of reparametrizations determined by 
this construction in fact converges to a reparametrization of cP that adjust all the time 
maps simultaneously, at least over the shrinking {Sn} of {Sn}. In fact we will verify 
that {CPn} is locally finite in the sense that for any (x, t) E M X Rl there are 
neighborhoods N ~ M of x, I ~ Rl of t, and an index no such that CPn = CPno for all 
(y, s) E N X I, and all n ;;:. no. Thus the pointwise limit of {CPn} is a well-defined 
reparametrization of cP; it is easy to see that it correctly adjusts all the time maps. 

To see that {CPn} is locally finite, fix x E M, t E R\ for definiteness say t > O. 
Because {Sn} is complete we may choose cross-sections Si' Sj so that there is a 
compact neighborhood N ~ Int Si n (Int Sj . Rl) of y(x) n Si' with fij positive on 
N, and both x, x . t in the flow box: 

F= {Y·SlyEN,sE [O,.t;/y)]} 
(here fij and y . s may refer to the original cP; but not that F is well defined 
independent of any reparametrization of cp). Since {Sn} is locally finite only finitely 
many of the Sn meet F. Let no be the largest index of those that do. Now since {CPn} 
satisfies (b), if n > no then the time parametrizations of an orbit segment in F 
induced by CPn and CPn-l are identical. Thus if (y, s) is sufficiently close to (x, t), then 
CPn(y, s) = CPno(y, s) for all n > no as required. This completes the proof of the 
reparametrization theorem. 

S. An application. We now give an application of the classification theorem proved 
above. In [Wi] Wilson gives a necessary and sufficient condition for local equiva-
lence of flows and uses it to prove that Coleman's conjecture (stated below) holds if 
either m = 1 or n = 1. We give a simple proof of this fact using the classification· 
theorem. 

8.1. THE CONJECTURE OF COLEMAN. A flow cP on Rm X Rn is said to have 0 as a 
topologically hyperbolic equilibrium if 

(a) {O} is the maximal cp-invariant subset with isolating block B = nm X nn. 
(b) The set of points at which the vector field is (externally) tangent to B is 

'T = an m X ann = { (x, y) E Rm+nlllxll = 1, lIyll = I}. 

(c) Orbits of cP enter Bon b+\ 'T (the set of ingress points), 
where b+= an m X nn, and leaves B on b-\ 'T (the set of egress points), where 
b-= D m X ann. 
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(d) The stable (unstable) manifold of 0 in B is D m X {O} ({O} X Dn) that is for 
x E B, the orbit y(x) tends to 0 in positive (negative) time if and only if x E D m X 

{O} (x E {O} X Dn). 
CONJECTURE. Such a flow <I> is locally topologically equivalent at 0 to the standard 

hyperbolic flow <l>m,n on Rm X Rn defined by the differential equations 
.x = -x, y = y (x E Rm , y E Rn ), 

where <I> is said to be locally topologically equivalent (at 0) to <l>m,n if there is a 
homeomorphism h: U --+ h(U) of some neighborhood U of 0 that takes each orbit 
segment of <I> in U onto an orbit segment of <l>m,n in h(U) preserving the natural 
orientation. 

8.2. REMARK. In [Ne3], Neumann gives a counterexample to the conjecture by 
constructing a Coo flow <I> on R2 X R2 that is not locally equivalent to the correspon-
diing standard hyperbolic flow <1>2,2' 

The conjecture is now fully resolved and there exist counterexamples in all higher 
dimensions [Pi]. 
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8.3. PROOF OF THE CONJECTURE WHEN n = 1. We want to show that cf>m,1 is locally 
topologically equivalent at 0 to cf>. Let B = D m X DI and B' = D m X DI be the 
given isolating blocks at 0 for (Rm + l , cf>m,l) and (Rm+\ cf» respectively. We will find a 
local equivalence of B onto B'. Since any local equivalence k: B/{O} ~ B'/{O} 
automatically extends by k(O) = 0, we can consider the completely unstable restric-
tions of cf>m.l and cf> to Rm+I/{O}. By the classification theorem it then suffices to find 
an order preserving homeomorphism of the orbit spaces 

h: N/cf>m,1 ~ N'/cf>, 
where N = B/{O} and N' = B'/{O}. 

Since 0 is topologically hyperbolic for both cf>m,1 and cf>, both orbit spaces may be 
regarded as quotient spaces of (cf. Figure 7) 

a(Dm X DI) = (sm-I X DI) U(Dm X SO) 

in which sm-I X (DI \ {OD is identified with (Dm \ {OD X SO by means of the 
Poincare map induced by cf>m,1 in the case of N / cf>m,1 and by cf> in the case of N' / cf>. 
We will denote these Poincare maps by p, p' respectively; thus, for x E sm-I X D\ 
the cf>m,1 orbit that enters N at x exists N at p(x), 

N/cf>m,1 = (sm-I X DI) U(Dm X SO)/{x ~ p(x)}, 
and 

N'/cf> = (sm-I X DI) U(Dm X SO)/{x ~ p'(x)}. 
We now obtain the homeomorphism h: N/cf>m,1 ~ N'/cf> from a homeomorphism hI 
of (sm-I X DI) U (Dm X So) onto itself that is compatible with these identifica-
tions. On sm-I X DI we can take hI to be the "identity"; because of the compatibil-
ity requirement this automatically induces 

hI: (Dm\{O}) X SO ~ (Dm\{O}) X SO 

by hI = p'hIP-I. Now observe that this automatically extends to the required 
homeomorphism of all of aM onto aM'. The induced homeomorphism h: N /cf>m,1 ~ 
N' / cf> clearly preserves the order structure, and so the proof is complete. 
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