Maps between surfaces
HTML articles powered by AMS MathViewer
- by Richard Skora
- Trans. Amer. Math. Soc. 291 (1985), 669-679
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800257-5
- PDF | Request permission
Abstract:
The Uniqueness Conjecture states if $\phi , \psi : M \to N$ are $d$-fold, simple, primitive, branched coverings between closed, connected surfaces, then $\phi$ and $\psi$ are equivalent. The Uniqueness Conjecture is proved in the case that $M$ and $N$ are nonorientable and $N = \mathbf {R}{P^2}$ or Klein bottle. It is also proved in the case that $M$ and $N$ are nonorientable and $d/2 < d\chi (N) - \chi (M)$. As an application it is shown that two $d$-fold, branched coverings $\phi :{M_1} \to N, \psi :{M_2} \to N$ between closed, connected surfaces are branched cobordant.References
- Israel Berstein and Allan L. Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87–124. MR 517687, DOI 10.1090/S0002-9947-1979-0517687-9
- Israel Berstein and Allan L. Edmonds, On the classification of generic branched coverings of surfaces, Illinois J. Math. 28 (1984), no. 1, 64–82. MR 730712
- A. Clebsch, Zur Theorie der Riemann’schen Fläche, Math. Ann. 6 (1873), no. 2, 216–230 (German). MR 1509816, DOI 10.1007/BF01443193
- Allan L. Edmonds, Deformation of maps to branched coverings in dimension three, Math. Ann. 245 (1979), no. 3, 273–279. MR 553345, DOI 10.1007/BF01673511
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- J. Lüroth, Note über Verzweigungsschnitte und Querschnitte in einer Riemann’schen Fläche, Math. Ann. 4 (1871), no. 2, 181–184 (German). MR 1509744, DOI 10.1007/BF01442591
- Richard Skora, Maps between surfaces, Trans. Amer. Math. Soc. 291 (1985), no. 2, 669–679. MR 800257, DOI 10.1090/S0002-9947-1985-0800257-5
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 669-679
- MSC: Primary 57M12; Secondary 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800257-5
- MathSciNet review: 800257