Projective modules in the category ${\scr O}_ S$: self-duality
Author:
Ronald S. Irving
Journal:
Trans. Amer. Math. Soc. 291 (1985), 701-732
MSC:
Primary 17B10; Secondary 22E47
DOI:
https://doi.org/10.1090/S0002-9947-1985-0800259-9
MathSciNet review:
800259
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Given a parabolic subalgebra ${\mathfrak {p}_S}$ of a complex, semisimple Lie algebra $\mathfrak {g}$, there is a naturally defined category ${\mathcal {O}_S}$ of $\mathfrak {g}$-modules which includes all the $\mathfrak {g}$-modules induced from finite-dimensional ${\mathfrak {p}_S}$-modules. This paper treats the question of whether certain projective modules in ${\mathcal {O}_S}$ are isomorphic to their dual modules. The projectives in question are the projective covers of those simple modules occurring in the socles of generalized Verma modules. Their self-duality is proved in a number of cases, and additional information is obtained on the generalized Verma modules.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak g}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- Brian D. Boe and David H. Collingwood, A comparison theory for the structure of induced representations, J. Algebra 94 (1985), no. 2, 511–545. MR 792968, DOI https://doi.org/10.1016/0021-8693%2885%2990197-8
- Walter Borho and Jens Carsten Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), no. 1, 1–53 (German, with English summary). MR 453826, DOI https://doi.org/10.1007/BF01695950
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Thomas J. Enright and Brad Shelton, Decompositions in categories of highest weight modules, J. Algebra 100 (1986), no. 2, 380–402. MR 840583, DOI https://doi.org/10.1016/0021-8693%2886%2990083-9
- O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302. MR 644519
- J. E. Humphreys, A construction of projective modules in the category ${\cal O}$ Bernstein-Gel′fand-Gel′fand, Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math. 39 (1977), no. 4, 301–303. MR 0466244, DOI https://doi.org/10.1016/0165-1765%2892%2990193-3 R. S. Irving, Projective modules in the category $O$, typescript, 1982.
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170 A. Joseph, Three topics in enveloping algebras, preprint, 1984.
- J. Lepowsky, Generalized Verma modules, the Cartan-Helgason theorem, and the Harish-Chandra homomorphism, J. Algebra 49 (1977), no. 2, 470–495. MR 463360, DOI https://doi.org/10.1016/0021-8693%2877%2990253-8
- Alvany Rocha-Caridi, Splitting criteria for ${\mathfrak g}$-modules induced from a parabolic and the Berňsteĭn-Gel′fand-Gel′fand resolution of a finite-dimensional, irreducible ${\mathfrak g}$-module, Trans. Amer. Math. Soc. 262 (1980), no. 2, 335–366. MR 586721, DOI https://doi.org/10.1090/S0002-9947-1980-0586721-0
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
- Richard P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168–184. MR 578321, DOI https://doi.org/10.1137/0601021
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), no. 4, 805–859. MR 552528
- Dan Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 489–494 (1984). MR 740080 D. H. Collingwood, The $\mathfrak {n}$-homology of Harish-Chandra modules I: generalizing a theorem of Kostant, preprint, February 1984.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10, 22E47
Retrieve articles in all journals with MSC: 17B10, 22E47
Additional Information
Keywords:
Generalized Verma modules,
category <!– MATH $\mathcal {O}$ –> <IMG WIDTH="22" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$\mathcal {O}$">
Article copyright:
© Copyright 1985
American Mathematical Society