Factorization of diagonally dominant operators on $L_ 1([0,1],X)$
HTML articles powered by AMS MathViewer
- by Kevin T. Andrews and Joseph D. Ward
- Trans. Amer. Math. Soc. 291 (1985), 789-800
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800263-0
- PDF | Request permission
Abstract:
Let $X$ be a separable Banach space. It is shown that every diagonally dominant invertible operator on ${L_1}([0, 1], X)$ can be factored uniquely as a product of an invertible upper triangular operator and an invertible unit lower triangular operator.References
- William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233. MR 0383098, DOI 10.1016/0022-1236(75)90041-5 M. A. Barkar and I. C. Gohberg, On factorization of operators in Banach spaces, Amer. Math. Soc. Transl. 90 (1970), 103-133.
- C. de Boor, Rong Qing Jia, and A. Pinkus, Structure of invertible (bi)infinite totally positive matrices, Linear Algebra Appl. 47 (1982), 41–55. MR 672731, DOI 10.1016/0024-3795(82)90225-7
- A. S. Cavaretta Jr., W. A. Dahmen, C. A. Micchelli, and P. W. Smith, A factorization theorem for banded matrices, Linear Algebra Appl. 39 (1981), 229–245. MR 625253, DOI 10.1016/0024-3795(81)90306-2
- C. K. Chui, J. D. Ward, and P. W. Smith, Cholesky factorization of positive definite bi-infinite matrices, Numer. Funct. Anal. Optim. 5 (1982), no. 1, 1–20. MR 703114, DOI 10.1080/01630568208816129
- Avraham Feintuch, Factorization along nest algebras, Proc. Amer. Math. Soc. 84 (1982), no. 2, 192–194. MR 637167, DOI 10.1090/S0002-9939-1982-0637167-5
- I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
- Richard B. Holmes, Mathematical foundations of signal processing, SIAM Rev. 21 (1979), no. 3, 361–388. MR 535119, DOI 10.1137/1021053
- N. J. Kalton, The endomorphisms of $L_{p}(0\leq p\leq i)$, Indiana Univ. Math. J. 27 (1978), no. 3, 353–381. MR 470670, DOI 10.1512/iumj.1978.27.27027
- N. J. Kalton, Isomorphisms between $L_{p}$-function spaces when $p<1$, J. Functional Analysis 42 (1981), no. 3, 299–337. MR 626447, DOI 10.1016/0022-1236(81)90092-6
- David R. Larson, Nest algebras and similarity transformations, Ann. of Math. (2) 121 (1985), no. 3, 409–427. MR 794368, DOI 10.2307/1971180
- P. W. Smith and J. D. Ward, Factorization of diagonally dominant operators on $l_1$, Illinois J. Math. 29 (1985), no. 3, 370–381. MR 786727, DOI 10.1215/ijm/1256045629
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 789-800
- MSC: Primary 47B38; Secondary 46E40, 47A68
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800263-0
- MathSciNet review: 800263