Multipliers on the space of semiperiodic sequences
HTML articles powered by AMS MathViewer
- by Manuel Núñez Jiménez PDF
- Trans. Amer. Math. Soc. 291 (1985), 801-811 Request permission
Abstract:
Semiperiodic sequences are defined to be the uniform limit of periodic sequences. They form a space of continuous functions on a compact group $\Delta$. We study the properties of the Radon measures on $\Delta$ in order to classify the multipliers for the space of semiperiodic sequences, paying special attention to those which can be realized as transference functions of physically constructible filters.References
- Luigi Amerio and Giovanni Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold Co., New York-Toronto, Ont.-Melbourne, 1971. MR 0275061, DOI 10.1007/978-1-4757-1254-4 Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. I, Academic Press, New York, 1963.
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738, DOI 10.1007/978-3-642-65030-7
- Manuel Valdivia, Topics in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 85, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 671092 M. E. Munroe, Measure and integration, Addison-Wesley, Reading, Mass., 1971.
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 801-811
- MSC: Primary 43A22; Secondary 28C05, 42B15, 43A25
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800264-2
- MathSciNet review: 800264