$(n-1)$-axial $\textrm {SO}(n)$ and $\textrm {SU}(n)$ actions on homotopy spheres
HTML articles powered by AMS MathViewer
- by R. D. Ball
- Trans. Amer. Math. Soc. 292 (1985), 51-79
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805953-1
- PDF | Request permission
Abstract:
Let $G(n) = O(n)$ or $U(n)$ and $SG(n) = SO(n)$ or $SU(n)$. For each integer $m \geqslant 1$ a family $\{ {S_{\gamma ,\sigma }}:\gamma \in H,\sigma \in K\}$ of $(n - 1)$-axial $SG(n)$ homotopy spheres ${S_{\gamma ,\sigma }}$ is constructed. Each ${S_{\gamma ,\sigma }}$ has fixed point set of dimension $(m - 1) \geqslant 0$ and orbit space of dimension $r = \tfrac {1} {2}n(n - 1) + (m - 1)$ (resp. $r = {(n - 1)^2} + m - 1$) if $SG(n) = SO(n)$ (resp. $SU(n)$). $H$ is ${\pi _{r - 1}}(SG(n)/G(n - 1))$. $K$ is trivial if $SG(n) = SO(n)$ and is a homotopy theoretically defined subgroup of sections of an ${S^2}$ bundle depending only on $m$ and $n$ if $SG(n) = SU(n)$. Assume that $m$ and $n$ satisfy the mild restriction $\S 5$, (1). It is shown that the above family is universal for $(n - 1)$-axial $SG(n)$ homotopy spheres and provides a classification analogous to the classification of fibre bundles: for each $(n - 1)$-axial $SG(n)$ homotopy sphere $\Sigma$ there is a ${S_{\gamma ,\sigma }}$ and a unique equivariant stratified map $\Sigma \to {S_{\gamma ,\sigma }}$. $\Sigma$ is equivariantly diffeomorphic to the pullback of ${S_{\gamma ,\sigma }}$ via the map $B(\Sigma ) \to B({S_{\gamma ,\sigma }})$ of orbit spaces. If $SG(n) = SO(n)$ then $\gamma$ is unique (and $\sigma = 1$). If $SG(n) = SU(n)$ then $\gamma$ is unique modulo the image of \[ {\pi _{r - 1}}S(U(n - 2) \times U(2))/U(k - 1) \times U(1)\quad {\text {in}}\;H.\] An example is given showing that the differentiable structure of the underlying smooth manifold of ${S_{\gamma ,\sigma }}$ may be exotic.References
- R. D. Ball, $(n - 1)$-axial $SO(n)$ and $SU(n)$ actions on homotopy spheres, Princeton Univ. Thesis, 1981.
β, On the equivariant diffeomorphism classification of regular $O(n)$ actions on homotopy spheres, (to appear).
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144 β, Biaxial actions, mimeographed notes.
- William Browder and Frank Quinn, A surgery theory for $G$-manifolds and stratified sets, ManifoldsβTokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp.Β 27β36. MR 0375348 M. W. Davis, Smooth actions of the classical groups, Princeton Univ. Ph. D. Thesis, 1974.
- Michael Davis, Multiaxial actions on manifolds, Lecture Notes in Mathematics, vol. 643, Springer, Berlin, 1978. MR 488195, DOI 10.1007/BFb0065343 β, Universal $G$-manifolds, Amer. J. Math. 103 (1981), 103-141.
- Michael Davis, Smooth $G$-manifolds as collections of fiber bundles, Pacific J. Math. 77 (1978), no.Β 2, 315β363. MR 510928, DOI 10.2140/pjm.1978.77.315
- Michael W. Davis, Some group actions on homotopy spheres of dimension seven and fifteen, Amer. J. Math. 104 (1982), no.Β 1, 59β90. MR 648481, DOI 10.2307/2374068
- M. Davis and W. C. Hsiang, Concordance classes of regular $\textrm {U}_{n}$ and $\textrm {Sp}_{n}$ action on homotopy spheres, Ann. of Math. (2) 105 (1977), no.Β 2, 325β341. MR 438368, DOI 10.2307/1971000 M. W. Davis, W. C . Hsiang and W. Y. Hsiang, Differential actions of compact simple Lie groups on homotopy spheres and euclidean spaces, Proc. Stanford Topology Conf., Amer. Math. Soc., Providence, R. I.
- M. Davis, W. C. Hsiang, and J. W. Morgan, Concordance classes of regular $\textrm {O}(n)$-actions on homotopy spheres, Acta Math. 144 (1980), no.Β 3-4, 153β221. MR 573451, DOI 10.1007/BF02392123
- Detlef Gromoll and Wolfgang Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401β406. MR 375151, DOI 10.2307/1971078
- Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. II, Ann. of Math. (2) 92 (1970), 189β223. MR 265511, DOI 10.2307/1970834
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- John Milnor, On manifolds homeomorphic to the $7$-sphere, Ann. of Math. (2) 64 (1956), 399β405. MR 82103, DOI 10.2307/1969983
- Gerald W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63β68. MR 370643, DOI 10.1016/0040-9383(75)90036-1 β, Covering smooth homotopies of orbit spaces, Inst. Hautes Γtudes Sci. Publ. Math. 51 (1980), 38-132. N. E. Steenrod, The topology of fibre bundles, Ann. of Math. Studies, No. 14, Princeton Univ. Press, Princeton, N. J., 1950.
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 51-79
- MSC: Primary 57S15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805953-1
- MathSciNet review: 805953