Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric
HTML articles powered by AMS MathViewer
- by Gaven J. Martin
- Trans. Amer. Math. Soc. 292 (1985), 169-191
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805959-2
- PDF | Request permission
Abstract:
Let $D$ be a proper subdomain of ${R^n}$ and ${k_D}$ the quasihyperbolic metric defined by the conformal metric tensor $d{\overline s ^2} = \operatorname {dist} {(x,\partial D)^{ - 2}}d{s^2}$. The geodesics for this and related metrics are shown, by purely geometric methods, to exist and have Lipschitz continuous first derivatives. This is sharp for ${k_D}$; we also obtain sharp estimates for the euclidean curvature of such geodesics. We then use these results to prove a general decomposition theorem for uniform domains in ${R^n}$, in terms of embeddings of bi-Lipschitz balls. We also construct a counterexample to the higher dimensional analogue of the decomposition theorem of Gehring and Osgood.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Robert J. Daverman, Embeddings of $(n-1)$-spheres in Euclidean $n$-space, Bull. Amer. Math. Soc. 84 (1978), no. 3, 377–405. MR 645404, DOI 10.1090/S0002-9904-1978-14476-0
- F. W. Gehring, Injectivity of local quasi-isometries, Comment. Math. Helv. 57 (1982), no. 2, 202–220. MR 684113, DOI 10.1007/BF02565857
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1–70. MR 180674, DOI 10.1007/BF02391817
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. MR 554817, DOI 10.1512/iumj.1980.29.29005
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- T. Benny Rushing, Topological embeddings, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR 0348752 J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes Math., vol. 229, Springer-Verlag, Berlin and New York, 1971. G. J. Martin, Quasiconformal groups which are not the quasiconformal conjugates of Möbius groups (to appear).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 169-191
- MSC: Primary 30C60
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805959-2
- MathSciNet review: 805959