Classification of semisimple algebraic monoids
HTML articles powered by AMS MathViewer
- by Lex E. Renner
- Trans. Amer. Math. Soc. 292 (1985), 193-223
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805960-9
- PDF | Request permission
Abstract:
Let $X$ be a semisimple algebraic monoid with unit group $G$. Associated with $E$ is its polyhedral root system $(X,\Phi ,C)$, where $X = X(T)$ is the character group of the maximal torus $T \subseteq G$, $\Phi \subseteq X(T)$ is the set of roots, and $C = X(\overline T )$ is the character monoid of $\overline T \subseteq E$ (Zariski closure). The correspondence $E \to (X,\Phi ,C)$ is a complete and discriminating invariant of the semisimple monoid $E$, extending the well-known classification of semisimple groups. In establishing this result, monoids with preassigned root data are first constructed from linear representations of $G$. That done, we then show that any other semisimple monoid must be isomorphic to one of those constructed. To do this we devise an extension principle based on a monoid analogue of the big cell construction of algebraic group theory. This, ultimately, yields the desired conclusions.References
- M. F. Atiyah and I. G. Mcdonald, Commutative algebra, Addisson-Wesley, Reading Mass., 1969.
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838 C. Chevalley, Classification des groupes Lie algébriques, Séminaire École Normale Supérieure, Paris, 1956-1958.
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588 (French). MR 284446 M. Demazure and P. Gabriel, Groupes algebriques, North-Holland, Paris, 1970.
- John Fogarty, Fixed point schemes, Amer. J. Math. 95 (1973), 35–51. MR 332805, DOI 10.2307/2373642
- J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163–172. MR 42380, DOI 10.2307/1969317
- Frank Grosshans, Observable groups and Hilbert’s fourteenth problem, Amer. J. Math. 95 (1973), 229–253. MR 325628, DOI 10.2307/2373655
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842 —, Linear algebraic groups, Springer-Verlag, New York, 1981.
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI 10.2307/1971168
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- Wilhelm Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen, Math. Ann. 33 (1888), no. 1, 1–48 (German). MR 1510529, DOI 10.1007/BF01444109
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371, DOI 10.1007/978-3-642-96676-7
- Tadao Oda, Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1978. Based on joint work with Katsuya Miyake. MR 546291
- Mohan S. Putcha, On linear algebraic semigroups. I, II, Trans. Amer. Math. Soc. 259 (1980), no. 2, 457–469, 471–491. MR 567091, DOI 10.1090/S0002-9947-1980-0567091-0
- Mohan S. Putcha, On linear algebraic semigroups. III, Internat. J. Math. Math. Sci. 4 (1981), no. 4, 667–690. MR 663652, DOI 10.1155/S0161171281000513
- Mohan S. Putcha, Green’s relations on a connected algebraic monoid, Linear and Multilinear Algebra 12 (1982/83), no. 3, 205–214. MR 678826, DOI 10.1080/03081088208817484
- Mohan S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80 (1983), no. 1, 164–185. MR 690712, DOI 10.1016/0021-8693(83)90026-1
- Mohan S. Putcha, Reductive groups and regular semigroups, Semigroup Forum 30 (1984), no. 3, 253–261. MR 765495, DOI 10.1007/BF02573457
- Mohan S. Putcha, Idempotent cross-sections of $\scr J$-classes, Semigroup Forum 26 (1983), no. 1-2, 103–109. MR 685119, DOI 10.1007/BF02572823 —, On irreducible algebraic monoids, unpublished notes,
- Mohan S. Putcha, A semigroup approach to linear algebraic groups. II. Roots, J. Pure Appl. Algebra 39 (1986), no. 1-2, 153–163. MR 816896, DOI 10.1016/0022-4049(86)90142-8 L. E. Renner, Algebraic monoids, U. B. C. Thesis, Vancouver, 1982.
- Lex E. Renner, Cohen-Macaulay algebraic monoids, Proc. Amer. Math. Soc. 89 (1983), no. 4, 574–578. MR 718975, DOI 10.1090/S0002-9939-1983-0718975-X
- Lex E. Renner, Reductive monoids are von Neumann regular, J. Algebra 93 (1985), no. 2, 237–245. MR 786751, DOI 10.1016/0021-8693(85)90157-7
- Lex E. Renner, Classification of semisimple rank one monoids, Trans. Amer. Math. Soc. 287 (1985), no. 2, 457–473. MR 768719, DOI 10.1090/S0002-9947-1985-0768719-7 —, Classification of semisimple algebraic monoids (unpublished announcement).
- Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117
- William C. Waterhouse, The unit groups of affine algebraic monoids, Proc. Amer. Math. Soc. 85 (1982), no. 4, 506–508. MR 660591, DOI 10.1090/S0002-9939-1982-0660591-1
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 193-223
- MSC: Primary 14M99; Secondary 20M99
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805960-9
- MathSciNet review: 805960