Algebraic and etale $K$-theory
HTML articles powered by AMS MathViewer
- by William G. Dwyer and Eric M. Friedlander
- Trans. Amer. Math. Soc. 292 (1985), 247-280
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805962-2
- PDF | Request permission
Abstract:
We define etale $K$-theory, interpret various conjectures of Quillen and Lichtenbaum in terms of a map from algebraic $K$-theory to etale $K$-theory, and then prove that this map is surjective in many cases of interest.References
- Shôrô Araki and Hirosi Toda, Multiplicative structures in $\textrm {mod}\,q$ cohomology theories. I, Osaka Math. J. 2 (1965), 71–115. MR 182967
- Armand Borel, Cohomology of arithmetic groups, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 435–442. MR 0578905
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- A. K. Bousfield and D. M. Kan, Pairings and products in the homotopy spectral sequence, Trans. Amer. Math. Soc. 177 (1973), 319–343. MR 372860, DOI 10.1090/S0002-9947-1973-0372860-2
- William Browder, Algebraic $K$-theory with coefficients $\~Z/p$, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 40–84. MR 513541
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- William G. Dwyer and Eric M. Friedlander, Étale $K$-theory and arithmetic, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 453–455. MR 648533, DOI 10.1090/S0273-0979-1982-15013-3
- William Dwyer, Eric Friedlander, Victor Snaith, and Robert Thomason, Algebraic $K$-theory eventually surjects onto topological $K$-theory, Invent. Math. 66 (1982), no. 3, 481–491. MR 662604, DOI 10.1007/BF01389225
- W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), no. 2, 139–155. MR 744846, DOI 10.1016/0040-9383(84)90035-1
- Eric M. Friedlander, Maps between localized homogeneous spaces, Topology 16 (1977), no. 3, 205–216. MR 501047, DOI 10.1016/0040-9383(77)90001-5
- Eric M. Friedlander, The infinite loop Adams conjecture via classification theorems for ${\cal F}$-spaces, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 109–150. MR 549303, DOI 10.1017/S0305004100056577
- Eric M. Friedlander, Étale $K$-theory. I. Connections with etale cohomology and algebraic vector bundles, Invent. Math. 60 (1980), no. 2, 105–134. MR 586424, DOI 10.1007/BF01405150
- Eric M. Friedlander, Étale $K$-theory. II. Connections with algebraic $K$-theory, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 231–256. MR 683636, DOI 10.24033/asens.1427
- Eric M. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies, No. 104, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 676809
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253, DOI 10.1007/978-3-662-62103-5
- Daniel Grayson, Higher algebraic $K$-theory. II (after Daniel Quillen), Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 217–240. MR 0574096 —, Finite generation of $K$-groups of a curve over a finite field (after D. Quillen), Lecture Notes in Math., vol. 966, Springer, New York, 1982, pp. 69-90.
- G. Harder, Die Kohomologie $S$-arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977), 135–175 (German). MR 473102, DOI 10.1007/BF01389786
- Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 489–501. MR 0406981
- Jean-Louis Loday, $K$-théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 309–377 (French). MR 447373, DOI 10.24033/asens.1312
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- J. P. May, $E_{\infty }$ spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 61–93. MR 0339152
- J. P. May, The spectra associated to permutative categories, Topology 17 (1978), no. 3, 225–228. MR 508886, DOI 10.1016/0040-9383(78)90027-7
- J. P. May, Pairings of categories and spectra, J. Pure Appl. Algebra 19 (1980), 299–346. MR 593258, DOI 10.1016/0022-4049(80)90105-X
- D. McDuff and G. Segal, Homology fibrations and the “group-completion” theorem, Invent. Math. 31 (1975/76), no. 3, 279–284. MR 402733, DOI 10.1007/BF01403148 A. S. Merkurjev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk USSR (to appear).
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Daniel Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 179–198. MR 0349812
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129 —, Higher algebraic $K$-theory, Proc. 1974 Internat. Congress of Mathematicians, Vol. I, Canad. Math. Soc., 1975, pp. 171-176.
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6 J. P. Serre, Cohomologie Galoisienne, Springer, New York, 1964.
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, DOI 10.1007/BF01406843 —, On higher $p$-adic regulartors, Algebraic $K$-theory, Lecture Notes in Math., vol. 854, Springer. New York, 1981, pp. 372-401. —, Operations on etale $K$-theory. Applications, Lecture Notes in Math., vol. 966, Springer, New York, 1982, pp. 271-303.
- John Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, DOI 10.1007/BF01390012
- R. W. Thomason, The Lichtenbaum-Quillen conjecture for $K/l_\ast [\beta ^{-1}]$, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 117–139. MR 686114
- R. W. Thomason, Riemann-Roch for algebraic versus topological $K$-theory, J. Pure Appl. Algebra 27 (1983), no. 1, 87–109. MR 680887, DOI 10.1016/0022-4049(83)90032-4 —, Absolute cohomological purity, preprint, Johns Hopkins University.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 247-280
- MSC: Primary 18F25; Secondary 11R70, 19F27, 55N15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805962-2
- MathSciNet review: 805962