On the restriction of the Fourier transform to a conical surface

Author:
Bartolome Barcelo Taberner

Journal:
Trans. Amer. Math. Soc. **292** (1985), 321-333

MSC:
Primary 42B10

DOI:
https://doi.org/10.1090/S0002-9947-1985-0805965-8

MathSciNet review:
805965

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Gamma$ be the surface of a circular cone in ${{\mathbf {R}}^3}$. We show that if $1 \leqslant p < 4/3$, $1/q = 3(1 - 1/p)$ and $f \in {L^p}({{\mathbf {R}}^3})$, then the Fourier transform of $f$ belongs to ${L^q}(\Gamma ,d\sigma )$ for a certain natural measure $\sigma$ on $\Gamma$. Following P. Tomas we also establish bounds for restrictions of Fourier transforms to conic annuli at the endpoint $p = 4/3$, with logarithmic growth of the bound as the thickness of the annulus tends to zero.

- John J. Benedetto (ed.),
*Euclidean harmonic analysis*, Lecture Notes in Mathematics, vol. 779, Springer, Berlin, 1980. MR**576037** - E. Prestini,
*A restriction theorem for space curves*, Proc. Amer. Math. Soc.**70**(1978), no. 1, 8–10. MR**467160**, DOI https://doi.org/10.1090/S0002-9939-1978-0467160-6 - Alberto Ruiz,
*On the restriction of Fourier transforms to curves*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 186–212. MR**730069** - E. M. Stein,
*Some problems in harmonic analysis*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR**545235** - Robert S. Strichartz,
*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**512086** - Peter A. Tomas,
*Restriction theorems for the Fourier transform*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR**545245** - Peter A. Tomas,
*A note on restriction*, Indiana Univ. Math. J.**29**(1980), no. 2, 287–292. MR**563213**, DOI https://doi.org/10.1512/iumj.1980.29.29020 - A. Zygmund,
*On Fourier coefficients and transforms of functions of two variables*, Studia Math.**50**(1974), 189–201. MR**387950**, DOI https://doi.org/10.4064/sm-50-2-189-201

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B10

Retrieve articles in all journals with MSC: 42B10

Additional Information

Article copyright:
© Copyright 1985
American Mathematical Society