Multiparameter maximal functions along dilation-invariant hypersurfaces
HTML articles powered by AMS MathViewer
- by Hasse Carlsson, Peter Sjögren and Jan-Olov Strömberg
- Trans. Amer. Math. Soc. 292 (1985), 335-343
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805966-X
- PDF | Request permission
Abstract:
Consider the hypersurface ${x_{n + 1}} = \Pi _1^nx_i^{{\alpha _i}}$ in ${{\mathbf {R}}^{n + 1}}$. The associated maximal function operator is defined as the supremum of means taken over those parts of the surface lying above the rectangles $\{ 0 \leqslant {x_i} \leqslant {h_i},\;i = 1, \ldots ,n\}$. We prove that this operator is bounded on ${L^p}$ for $p > 1$. An analogous result is proved for a quadratic surface in ${{\mathbf {R}}^3}$.References
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Alexander Nagel and Elias M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), no. 1, 83–106. MR 761764, DOI 10.1016/0001-8708(84)90038-0
- A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, DOI 10.1073/pnas.75.3.1060
- Alexander Nagel and Stephen Wainger, $L^{2}$ boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), no. 4, 761–785. MR 450901, DOI 10.2307/2373864
- Peter Sjögren, Fatou theorems and maximal functions for eigenfunctions of the Laplace-Beltrami operator in a bidisk, J. Reine Angew. Math. 345 (1983), 93–110. MR 717888, DOI 10.1515/crll.1983.345.93 —, Admissible convergence of Poisson integrals in symmetric spaces, Preprint no. 1985-4, Chalmers Univ. of Technology and Univ. of Göteborg, Göteborg, Sweden.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Robert S. Strichartz, Singular integrals supported on submanifolds, Studia Math. 74 (1982), no. 2, 137–151. MR 679830, DOI 10.4064/sm-74-2-137-151
- James T. Vance Jr., $L^{p}$-boundedness of the multiple Hilbert transform along a surface, Pacific J. Math. 108 (1983), no. 1, 221–241. MR 709712
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 335-343
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1985-0805966-X
- MathSciNet review: 805966