## Les groupes $\omega$-stables de rang fini

HTML articles powered by AMS MathViewer

- by Daniel Lascar PDF
- Trans. Amer. Math. Soc.
**292**(1985), 451-462 Request permission

## Abstract:

We prove that a group $G$ which is $\omega$-stable of finite Morley rank is nonmultidimensional. If moreover it is connected and does not have any infinite normal abelian definable subgroup, then it is isomorphic to $\Pi {H_i}/K$, where the ${H_i}$ are ${\omega _1}$-categorical groups and $K$ is a finite group.## References

- Walter Baur, Gregory Cherlin, and Angus Macintyre,
*Totally categorical groups and rings*, J. Algebra**57**(1979), no.Â 2, 407â€“440. MR**533805**, DOI 10.1016/0021-8693(79)90230-8
C. Berline, - Gregory Cherlin,
*Groups of small Morley rank*, Ann. Math. Logic**17**(1979), no.Â 1-2, 1â€“28. MR**552414**, DOI 10.1016/0003-4843(79)90019-6
J. Combase, - A. H. Lachlan,
*Spectra of $\omega$-stable theories*, Z. Math. Logik Grundlagen Math.**24**(1978), no.Â 2, 129â€“139. MR**495441**, DOI 10.1002/malq.19780240902 - Daniel Lascar,
*Ordre de Rudin-Keisler et poids dans les thĂ©ories stables*, Z. Math. Logik Grundlagen Math.**28**(1982), no.Â 5, 413â€“430 (French). MR**679127**, DOI 10.1002/malq.19820282704
â€”, - Daniel Lascar and Bruno Poizat,
*An introduction to forking*, J. Symbolic Logic**44**(1979), no.Â 3, 330â€“350. MR**540665**, DOI 10.2307/2273127
W. E. Marsh, - Bruno Poizat,
*Sous-groupes dĂ©finissables dâ€™un groupe stable*, J. Symbolic Logic**46**(1981), no.Â 1, 137â€“146 (French). MR**604887**, DOI 10.2307/2273265
â€”, - Saharon Shelah,
*Classification theory and the number of nonisomorphic models*, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**513226** - Saharon Shelah,
*The spectrum problem. I. $\aleph _{\varepsilon }$-saturated models, the main gap*, Israel J. Math.**43**(1982), no.Â 4, 324â€“356. MR**693353**, DOI 10.1007/BF02761237
S. Thomas, - B. I. Zilâ€˛ber,
*Groups and rings whose theory is categorical*, Fund. Math.**95**(1977), no.Â 3, 173â€“188 (Russian, with English summary). MR**441720**

*Superstable groups*;

*a partial answer to a conjecture of Cherlin and Zilber*, soumis. C. Berline et D. Lascar,

*Superstable groups*, soumis.

*Soft model theoretic analysis of*${\omega _1}$-

*categorical theories*, preprint.

*ThĂ©orie de la stabilitĂ©*(a paraĂ®tre).

*On*${\omega _1}$-

*categorical non*$\omega$-categorical theories, Ph.D. Thesis, Dartmouth College, 1966.

*Groupes stables avec types gĂ©nĂ©riques rĂ©guliers*, J. Symbolic Logic

**48**(1982), 339-355.

*Model theory of locally finite groups*, preprint.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**292**(1985), 451-462 - MSC: Primary 03C45; Secondary 03C60, 20E34
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808731-2
- MathSciNet review: 808731