Les groupes -stables de rang fini
Author:
Daniel Lascar
Journal:
Trans. Amer. Math. Soc. 292 (1985), 451-462
MSC:
Primary 03C45; Secondary 03C60, 20E34
DOI:
https://doi.org/10.1090/S0002-9947-1985-0808731-2
MathSciNet review:
808731
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that a group which is
-stable of finite Morley rank is nonmultidimensional. If moreover it is connected and does not have any infinite normal abelian definable subgroup, then it is isomorphic to
, where the
are
-categorical groups and
is a finite group.
- [BCM] Walter Baur, Gregory Cherlin, and Angus Macintyre, Totally categorical groups and rings, J. Algebra 57 (1979), no. 2, 407–440. MR 533805, https://doi.org/10.1016/0021-8693(79)90230-8
- [Be] C. Berline, Superstable groups; a partial answer to a conjecture of Cherlin and Zilber, soumis.
- [BL] C. Berline et D. Lascar, Superstable groups, soumis.
- [Ch] Gregory Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1–28. MR 552414, https://doi.org/10.1016/0003-4843(79)90019-6
- [Co]
J. Combase, Soft model theoretic analysis of
-categorical theories, preprint.
- [La] A. H. Lachlan, Spectra of 𝜔-stable theories, Z. Math. Logik Grundlagen Math. 24 (1978), no. 2, 129–139. MR 495441, https://doi.org/10.1002/malq.19780240902
- [LS1] Daniel Lascar, Ordre de Rudin-Keisler et poids dans les théories stables, Z. Math. Logik Grundlagen Math. 28 (1982), no. 5, 413–430 (French). MR 679127, https://doi.org/10.1002/malq.19820282704
- [LS2] -, Théorie de la stabilité (a paraître).
- [LP] Daniel Lascar and Bruno Poizat, An introduction to forking, J. Symbolic Logic 44 (1979), no. 3, 330–350. MR 540665, https://doi.org/10.2307/2273127
- [M]
W. E. Marsh, On
-categorical non
-categorical theories, Ph.D. Thesis, Dartmouth College, 1966.
- [P1] Bruno Poizat, Sous-groupes définissables d’un groupe stable, J. Symbolic Logic 46 (1981), no. 1, 137–146 (French). MR 604887, https://doi.org/10.2307/2273265
- [P2] -, Groupes stables avec types génériques réguliers, J. Symbolic Logic 48 (1982), 339-355.
- [Sh1] Saharon Shelah, Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 513226
- [Sh2] Saharon Shelah, The spectrum problem. I. ℵ_{𝜖}-saturated models, the main gap, Israel J. Math. 43 (1982), no. 4, 324–356. MR 693353, https://doi.org/10.1007/BF02761237
- [T] S. Thomas, Model theory of locally finite groups, preprint.
- [Z] B. I. Zil′ber, Groups and rings whose theory is categorical, Fund. Math. 95 (1977), no. 3, 173–188 (Russian, with English summary). MR 441720
Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C45, 03C60, 20E34
Retrieve articles in all journals with MSC: 03C45, 03C60, 20E34
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1985-0808731-2
Article copyright:
© Copyright 1985
American Mathematical Society